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Abstract

This paper studies the effects of restrictions on high-frequency investment for price infor-

mativeness and the profits and utility of low-frequency investors. We examine a variant of the

standard noisy rational expectations framework in which both the exposures of investors and

their information about future fundamentals endogenously vary across future dates. In this

environment, precluding investors from holding portfolios with exposures to fundamentals that

change at high frequency has zero effect on the information embedded in prices about lower-

frequency variation in fundamentals. Furthermore, while the entry of high-frequency investors

reduces the profits of low-frequency investors, restricting high-frequency investment in response

only makes the problem worse.

The goal of this paper is to understand the effects of restrictions on investment strategies at

particular frequencies. There are frequent discussions of whether the rise of high-frequency trade

has hurt other investors, and policymakers often cite the goal of discouraging “short-termism” in

favor of buy-and-hold investors. There have therefore been various proposals to directly limit trade

at the highest frequencies (e.g. the sub-second batch auction mechanism of Budish, Cramton, and

Shim (2015)), to tax transactions (i.e. the Tobin (1978) tax), and also to discourage portfolio

turnover at frequencies on the order of a year, e.g. through capital gains taxation or changes in

corporate voting structure (such as the Long-Term Stock Exchange1). While there is some recent

work on the consequences of various limits on information gathering ability,2 and there have been

empirical analyses of high-frequency traders,3 we are not aware of any other work that directly

∗Crouzet: Northwestern University. Dew-Becker: Northwestern University and NBER. Nathanson: Northwestern
University. An earlier version of this paper was circulated under the title “Multi-frequency trade”. We appreciate
helpful comments from Bradyn Breon-Drish, Alex Chinco, Stijn Van Nieuwerburgh, Ioanid Rosu, Laura Veldkamp,
and seminar participants at Northwestern, the Adam Smith conference, the Finance Cavalcade, and the Red Rock
conference.

1See LTSE.org and Osipovich and Berman (2017).
2See Banerjee and Green (2015), Goldstein and Yang (2015), Dávila and Parlatore (2016), and Farboodi and

Veldkamp (2017). Farboodi and Veldkamp (2017) study the effect of changes in information acquisition technologies
over time. Biais, Foucault, and Moinas (2014) examine a setting with limits on traders’ ability to search for prices
across exchanges and to acquire fundamental information.

3E.g. Brogaard, Hendershott, and Riordan (2014), Hendershott and Riordan (2013) and Zhang (2010).
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studies the effects of restrictions on high- and low-frequency strategies on price informativeness

and investor profits.4

The question of what effects investment restrictions have strikes us as being of clear objective

importance given the interest of investors and policy makers in such restrictions. Moreover, the

answer is not obvious. One view is that there might be some sort of separation across frequencies,

so that restrictions in one realm do not affect outcomes in another. On the other hand, investors

obviously interact (they trade with each other), so it would be surprising if policies targeting a

particular type of investor did not act to benefit others. What we find is a mix of the two: market

characteristics at high frequencies can affect the profits and utility of low-frequency investors, but

they do not affect low-frequency price informativeness.

In order to analyze the effects of frequency-based restrictions on investment strategies, we re-

quire a model with two key characteristics: investors must have a meaningful choice about types of

information to acquire, and they must also be able to choose among investment strategies with ex-

posures that differ across horizons or frequencies.5 The paper develops a noisy rational expectations

equilibrium model that has precisely those characteristics and remains highly tractable.

Investors trade, on a single date, claims on future values of a dividend process. These can

be thought of as equity or dividend futures.6 Variation in a portfolio’s weights across maturities

represents variation in the exposure that the portfolio has to fundamentals at different horizons.

Investors are also able to acquire information about the future realizations of fundamentals across

horizons. All trade happens on a single date, so the model is not fully dynamic, but it has the two

features that we desire: exposures and information acquisition choices that may both vary across

horizons.

We use the futures market equilibrium to study the effect of restrictions on investment policies

on price informativeness and investor profits.7 A natural constraint that might be imposed on a

portfolio manager, either by their investors or by a regulator, is a restriction on how rapidly their

exposures can vary across dates. At one extreme are index funds, which are forced to have essentially

fixed exposures. Towards the other extreme are trading desks, which are sometimes required to have

risk exposures of zero at the end of each trading day, but may still have risk exposure during the

day (e.g. Brock and Kleidon (1992) and Menkveld (2013)). More concretely related to our setting

with futures markets, some managers are restricted from holding, for example, exposure to “level”

4Cartea and Penalva (2012) are perhaps closest. They study a model in which there are exogenously given high-
and low-frequency traders and examine how the high-frequency traders affect the prices received by the others.

5Shleifer and Vishny (1990) provide an early analysis of a choice by traders to focus on short- versus long-term
projects, while Goldstein and Yang (2015) provide a recent study with a choice of different types of signals to
learn about. Farboodi and Veldkamp (2017) study a model in which investors can learn whether to learn about
fundamentals or demand.

6While the futures market is used as a theoretical abstraction, we note that there are growing markets for such
claims; see Binsbergen, Brandt, and Koijen (2012) and Binsbergen and Koijen (2017)

7A technical contribution of the paper is to show that the type of futures market we study has a general solution
that applies when fundamentals follow arbitrary ARMA processes and that can be obtained by hand. For other related
work on frequency transformations, see Bandi and Tamoni (2014), Bernhardt, Seiler, and Taub (2010), Chinco and
Ye (2017), Chaudhuri and Lo (2016), Dew-Becker and Giglio (2016), and Kasa, Walker, and Whiteman (2013).
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or “slope” factors. In the context of our stylized model, the specific investment restrictions say

that investors may not hold portfolios of futures whose weights vary across maturities at specified

frequencies. If they cannot have fluctuations at higher then daily frequency, then they can effectively

only choose portfolio allocations once per day. The restriction thus can also be interpreted as

similar to the imposition of an infrequent batch auction mechanism as in Budish, Cramton, and

Shim (2015).

Our first main result is that price informativeness and liquidity are reduced at frequencies

targeted by such a policy, but not at any others. The model features endogenous information

acquisition, as in Goldstein and Yang (2015) and Kacperczyk, Van Nieuwerburgh, and Veldkamp

(2016), and at the restricted frequencies, investors have no incentive to acquire information, making

prices completely uninformative. But investors continue to obtain information at unrestricted

frequencies, meaning that those prices remain equally informative as without the policy.

In the time domain, the consequence of any restriction on trade is to make prices less informative

about fundamentals on each individual date. The effects differ, though, for sums of fundamentals

over time. As a specific example, consider a policy that discourages investors from holding portfolios

with exposures that change within a day. We show that such a policy increases mean-reverting

intraday noise in prices. Inference for moving averages of prices, though, such as the average over

a day or a week, is inhibited less since the transitory noise in prices averages out.

We view the model in this paper as a neoclassical benchmark. It does not feature frictions in

trade such as limit order books, so it should not be interpreted as addressing the type of high-

frequency trade that takes advantage of such frictions including arbitrage across exchanges. The

model includes a limited form of irrationality (on the part of noise traders), but further irrationality

would add more distortions to prices, as could differences in technology across investors. What our

analysis shows is that in order for restrictions on investment at some range of frequencies to have

effects at on prices others, one must add to the model another friction, or argue that the dynamics

that are not modeled here cause the results to change.

All of that said, even without those frictions, the imposition of restrictions on investment policies

can still have an impact on investor profits and utility. Our second key finding has to do with how

low-frequency investors are affected by the presence of high-frequency investors and by policies

restricting high-frequency investment. While the entrance of high-frequency investors reduces the

profits and utility of low-frequency investors, restricting high-frequency investment does not reverse

that decline; in fact, it exacerbates it.

In the model, investors whose positions are driven primarily by low-frequency fluctuations – i.e.

buy-and-hold type investors – are those who have low-frequency information about fundamentals.

However, even those investors have some amount of transitory variation in their portfolios. An

investor who has good information about the long-term value of a stock should be willing to provide

liquidity in the short-run, meaning that they will typically have positions that vary continuously,

according to variation in exogenous demand (e.g. due to liquidity needs or sentiment shocks). When

high-frequency investors enter the market, they are relatively better at providing such liquidity since
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they have information about the high-frequency features of fundamentals, so they reduce the profits

of low-frequency investors, which is the first part of the result.

But the liquidity provision of low-frequency investors is not reduced to zero, which is the source

of the second part of the result. When high-frequency investment is outlawed, it does not help the

low-frequency investors; in fact it hurts them by completely eliminating their ability to profit from

short-term liquidity provision. The only policy that can restore their lost profits is to eliminate

the high-frequency investors, rather than high-frequency investment itself. Taxes on changes in

positions over time (the analog in the model to taxes on trading) have similar effects.

Finally, the fact that both the entry of high-frequency investors and restrictions on high-

frequency trade reduce the profits of low-frequency investors makes it all the more surprising that

neither of those events reduces the informativeness of prices at low frequencies. That fact again

follows from the basic separability of the model across frequencies: while changes in markets at

high-frequencies will affect potentially all investors, they do not change incentives for information

acquisition at low frequencies, thus leaving price informativeness unaffected.

Our work is broadly related to a recent literature studying the impact of high-frequency trade.

Baldauf and Mollner (2017) provide a model in which the entrance of high-frequency traders can

hurt informed investors, which is a result similar to what we find, though through a different

channel. Whereas in their model high-frequency investors are fundamentally different from other

investors, we argue that a nice feature of our setting is that all investors are ex-ante identical, and

simply choose to specialize. Biais, Foucault, and Moinas (2015)? study a model where traders

specialize endogenously, but with a rather different concept of high-frequency trade from what we

use. In their setting, high-frequency traders equilibrate prices across trading venues, whereas here

they essentially equilibrate prices over time. Similar to us, they examine implications of high-

frequency traders for welfare and price informativeness. However, restricting high-frequency trade

in their setting almost inevitably reduces price informativeness as the high-frequency traders are

also assumed to perfectly observe the true fundamental value of the asset. We do not make that

assumption.

Budish, Cramton, and Shim (2015) examine the effect of restricting high-frequency trade, while

Biais, Foucault, and Moinas study a tax on speed technology. Both papers argue that such policies

can reduce the impact of high-frequency traders, but we suggest a path through which such policies

could also actually hurt lower-frequency investors. Hendershott, Jones, and Menkveld (2011) find

empirically that the entrance of high-frequency traders can improve price informativeness, which

is consistent with our model (though Weller (2017) provides evidence running in the opposite

direction).

The most important drawback of the model is that it is not fully dynamic, meaning that we

cannot directly study restrictions on trade, but rather study analogous restrictions on investment

policies. There is a literature on dynamic trade, but the extant models do not generate our two

desired choices for investors of information acquisition and investment exposures that can differ

across horizons. The two main difficulties in solving models of dynamic trade are the dynamic
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portfolio choice problem (which typically does not have closed-form solutions; see Chacko and

Viceira (2005) for a discussion) and the infinite-regress problem of Townsend (1983). There is work

that has made substantial progress in solving the infinite regress problem, but those models assume

that investors have only single-period objectives and they do not allow for a choice of information

across horizons.8 Recent work also examines dynamic models with strategic trade (with similar

restrictions regarding horizons), whereas here we study a fully competitive setting in which all

investors are price takers.9 Relative to the highly sophisticated work on dynamic trade available

in the literature, our goal is to take a well understood and highly tractable framework that is used

in leading models of information acquisition (e.g. Kacperczyk, Van Nieuwerburgh, and Veldkamp

(2016)) and study its implications for the effects of investment restrictions.

1 The model

1.1 Market structure

Time is denoted by t ∈ {−1, 0, 1, ..., T}, with T even, and we will focus on cases in which T

may be treated as large. There is a fundamentals process Dt, on which investors trade forward

contracts, with realizations on all dates except −1 and 0. The time series process is stacked into

a vector D ≡ [D1, D2, ..., DT ]′ (versions of variables without time subscripts denote vectors) and is

unconditionally distributed as

D ∼ N(0,ΣD). (1)

For our benchmark results, we focus on the case where fundamentals are stationary. Appendix

G shows that the results extend naturally to a case in which fundamentals are stationary in their

growth rate, rather than their level. We discuss that case further below. Stationarity implies that

ΣD is constant along its diagonals, and we further assume that the eigenvalues of ΣD are finite and

bounded away from zero.

The biggest restriction imposed by the stationarity assumption (whether in levels or differences)

is that we are assuming that the distribution of fundamentals is determined entirely by the matrix

ΣD . The model thus does not allow for stochastic volatility or more general changes in the higher

moments of Dt over time (though it could handle deterministic changes), nor does it allow for

nonlinearities in the time series dependence of D. The fact that we study the level (or change) in

fundamentals, rather than their log, is also a restriction, though one that is generally shared by

CARA–normal specifications (e.g. Grossman and Stiglitz (1980)).

There is a set of futures claims on realizations of the fundamental. When we say that the model

features a choice of investment across dates, we mean that investors will choose portfolio allocations

across the futures contracts, which then yield exposures to the realization of fundamentals on

8See Makarov and Rytchkov (2012), Kasa, Walker, and Whiteman (2013), and Rondina and Walker (2017).
9For models of dynamic strategic trade, see Vayanos (1999, 2001), Ostrovsky (2012), Banerjee and Breon-Drisch

(2016), Foucault, Hombert, and Rosu (2016), Du and Zhu (2017), and Dugast and Foucault (2017).
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different dates in the future.

A concrete example of a process Dt is the price of crude oil: oil prices follow some stochastic

process and investors trade futures on oil at many maturities. Dt could also be the dividend on a

stock, in which case the futures would be claims on dividends on individual dates. The analysis

of futures is an abstraction for the sake of the theory, though we note that dividend futures are

in fact traded (see Binsbergen and Koijen (2017)). While the concept of a futures market on the

fundamentals will be a useful analytic tool, we can also obviously price portfolios of futures. Equity,

for example, is a claim to the stream of fundamentals over time. Holding any given combination

of futures claims on the fundamental is equivalent to holding futures contracts on equity claims.

1.2 Information structure

There is a unit mass of “sophisticated” investors indexed by i ∈ [0, 1] . The realization of the time

series of fundamentals, {Dt}Tt=1, can be thought of as a single draw from a multivariate normal

distribution. Investors are able to acquire signals about that realization. The signals are a collection

{Yi,t}Tt=1 observed on date 0 with

Yi,t = Dt + εi,t, εi ∼ N (0,Σi) , (2)

where Σ−1
i is investor i’s signal precision matrix (which will be chosen endogenously below).

Through Yi,t, investors can learn about fundamentals on all dates between 1 and T . εi,t is a

stationary error process in the sense that cov (εi,t, εi,t+j) depends on j but not t. That also implies

that var (εi,t) is the same for all t, so all dates are equally difficult to learn about. The station-

arity assumption is imposed so that no particular date is given special prominence in the model.

Investors must choose an information policy that treats all dates symmetrically, and they are not

allowed to choose to learn about a single date.

The signal structure generates one of our desired model features, which is that investors can

choose to learn about fundamentals across different dates in the future. When the errors are

positively correlated across dates, the signals are relatively less useful for forecasting trends in

fundamentals since the errors also have persistent trends. Conversely, when errors are negatively

correlated across dates, the signals are less useful for forecasting transitory variation and provide

more accurate information about moving averages.

1.3 Investment objective

On date 0, there is a market for forward claims on fundamentals on all dates in the future. Investor

i’s demand for a date-t forward conditional on the set of prices and signals is denoted Qi,t. Investors

have mean-variance utility over the net present value of excess returns:

U0,i = max
{Qi,t}

E0,i

[
T−1βtQi,t (Dt − Pt)

]
− 1

2
(ρT )−1 V ar0,i

[
T∑
t=1

βtQi,t (Dt − Pt)

]
, (3)
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where 0 < β ≤ 1 is the discount factor, E0,i and V ar0,i are the expectation and variance operators

conditional on agent i’s date-0 information set, {P, Yi}, and ρ is risk-bearing capacity per unit of

time. We treat all investors as having identical horizons, T . Appendix B shows that the horizon

has no effect on information choices in the model.

The key restriction here (beyond those implicit in the mean-variance assumption) is that signals

are acquired and trade occurs on date 0. In general settings there is no known closed-form solution

to even the partial-equilibrium dynamic portfolio choice problem, let alone to the full market

equilibrium.10 Moreover, allowing agents to obtain signals repeatedly yields a highly nontrivial

updating problem. We therefore use a relatively minimal static model. The model nevertheless

has the two characteristics that we stated we desire in the introduction: it allows for investment

strategies that place different weight on fundamentals on different dates in the future, and it allows

investors to make a choice about how precise their signals are for different types of fluctuations in

fundamentals.

The time discounting in (3) has the effect of making dates farther in the future less important

in the objective of the investors. We therefore define

Q̃i,t ≡ βtQi,t (4)

to be agent i’s discounted demand. In what follows, the Q̃i,t will be stationary processes. That

means that Qi,t = β−tQ̃i,t will generally grow in magnitude with maturity t, though only to a

relatively small extent for typical values of β and horizons on the order of 10–20 years.

1.4 Noise trader demand

In order to keep prices from being fully revealing, we assume there is uninformed demand from a set

of noise traders. The noise traders are investors with the same objective as the sophisticates, but

whose expectations are formed differently. Specifically, their expectations of fundamentals depend

only on an exogenous prior for fundamentals and a signal, which we denote Zt (their expectations

are unaffected by prices). The signal Zt is in reality uncorrelated with fundamentals, so it can be

viewed as a type of sentiment shock.

Appendix A shows that when the noise traders maximize an objective of the form of (3) but

with their incorrect expectations, then their demand, denoted Nt, can be written as

Ñt = Zt − kPt, (5)

where Ñt ≡ βtNt. (6)

Zt depends on the signals the noise traders receive (which are assumed to be common across them)

10Frequency-domain solutions to the infinite regress problem, such as Kasa, Walker, and Whiteman (2013) and
Makarov and Rytchkov (2012), restrict preferences to depend on wealth one period ahead in order to avoid the
dynamic portfolio problem.
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and k is a coefficient determining the sensitivity of noise trader demand to prices, which depends

on their risk aversion and how precise they believe their signals to be. In principle, Nt can depend

on prices on all dates (depending on the structure of priors and signals), but we restrict attention

to the case where Nt depends only on Pt for the sake of simplicity.

In the benchmark case where Dt is stationary in levels, we assume that Zt is also stationary in

levels – the noise traders have a signal technology with the same stationarity properties as that of

the sophisticates – which yields a useful symmetry between fundamentals, supply, and the signals,

in that they are all assumed to be stationary processes. That symmetry is why we use this particular

formalization of noise trader demand.

1.5 Asset market equilibrium in the time domain

We begin by solving for the market equilibrium on date 0 that takes the agents’ signal precisions,

Σ−1
i , as given. The Σ−1

i are chosen on date -1, and that optimization is discussed below.

Definition 1 For any given set of individual precisions {Σi}i∈[0,1], a date-0 asset market equilib-

rium is a set of demand functions, {Qi (P, Yi)}i∈[0,1], and a price vector P , such that investors

maximize utility and all markets clear:
∫
iQi,tdi+Nt = 0 for all t ≥ 1.

Investors submit demand curves for each futures contract to a Walrasian auctioneer who selects

equilibrium prices to clear all markets.

The structure of the time-0 equilibrium is mathematically that of Admati (1985), who studies

investment in a cross-section of assets, and the solution from that paper applies directly here (with

the minor difference that supply is also a function of prices). Here we are considering investment

across a set of futures contracts that represent claims on some fundamentals process across different

dates. The Admati (1985) solution is:

P = A1D +A2Z, (7)

A1 ≡ I −
(
ρ2Σ−1

avgΣ
−1
Z Σ−1

avg + Σ−1
avg + Σ−1

D + ρ−1k
)−1 (

ρ−1k + Σ−1
D

)
, (8)

A2 ≡ ρ−1A1Σ−1
avg, (9)

where Σ−1
avg ≡

∫
i
Σ−1
i di. (10)

As Admati (1985) discusses, this equilibrium is not particularly illuminating since standard intu-

itions, including the idea that increases in demand or decreases in supply should raise prices, do not

hold. Prices of futures maturing on any particular date depend on fundamentals and demand for

all other maturities except in knife-edge cases. Interpreting the equilibrium requires interpreting

complicated products of matrix inverses. The following section shows that the equilibrium can be

solved nearly exactly by hand when it is rewritten in terms of frequencies.
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2 Frequency domain interpretation

2.1 Frequency portfolios

The basic feature of the model that makes it difficult to interpret is that fundamentals, noise trader

demand, and signal errors are all correlated across dates. For any one of those three processes,

we could always use a standard orthogonal (eigen-) decomposition to yield a set of independent

components. But in general there is no reason to expect that three time series with different

correlation properties across dates would have the same orthogonal decomposition (in general they

do not). A central result from time series analysis, though, is that a particular frequency transform

asymptotically orthogonalizes all standard stationary time series processes.

The way to think about the transformation is that it involves simply analyzing the prices of

particular portfolios of futures instead of the futures themselves. The first requirement is that the

transformation should be full rank, in the sense that the set of portfolios allows an investor to

obtain the same payoffs as the futures themselves. Second, the transformed portfolios should be

independent of each other. And third, since we are studying trade at different frequencies, it would

be nice if the portfolios also had a frequency interpretation.

Obviously there are many different conceptions of fluctuations at different frequencies. One

might imagine step functions switching between +1 and -1 at different rates. For reasons we will

see below, it turns out that using sines and cosines will be most natural in our setting. So the

portfolios that we study – representing investor exposures – vary smoothly over time in the form

cos (ωt) and sin (ωt).

Formally, the portfolio weights are represented as vectors of the form

ch ≡
√

2

T

(
cos (ωh (t− 1))

)T
t=1

, (11)

sh ≡
√

2

T

(
sin (ωh (t− 1))

)T
t=1

, (12)

where ωh ≡ 2πh/T, (13)

for different values of the integer h ∈ {0, 1, ..., T/2}. c0 is the lowest frequency portfolio, with the

same weight on all dates, while cT
2

is the highest frequency, with weights switching each period

between +/− 1.

Figure 1 plots the weights for a pair of those portfolios. The x-axis represents dates and the

y-axis is the weight of the portfolio on each date. The weights vary smoothly over time, with the

rate at which they change signs depending on the frequency ω.

Economically, the basic idea is to think about the investment problem as being one of choosing

exposure to different types of fluctuations in fundamentals. A long-term investor can be thought of

as one whose exposure to fundamentals changes little over time. A high-frequency investor, on the

other hand, holds a portfolio whose weights change more frequently and by larger amounts. Our
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claim is that studying the frequency portfolios is more natural than studying individual futures

claims. Investors do not typically acquire exposure to fundamentals on only a single date. Rather,

they have exposures on multiple dates, and the portfolios we study are one way to express that.

While investors will also obviously not hold a portfolio that takes the exact form of a cosine, any

portfolio can be expressed as a sum of cyclical components. An investor whose portfolio loadings

change frequently will have a portfolio whose weights are relatively larger on the high-frequency

components, which figure 1 shows generate rapid changes in loadings.

2.2 Properties of the frequency transformation

The portfolio weights can be combined into a matrix, Λ, which implements the frequency transfor-

mation.

Λ ≡
[

1√
2
c0, c1, s1, c2, s2, ..., cT

2
−1, sT

2
−1,

1√
2
cT

2

]
(14)

(s0 and sT/2 do not appear since they are identically equal to zero; the 1/
√

2 scaling for c0 and

cT/2 gives them the same norms as the other vectors).

We use lower-case letters to denote frequency-domain objects. So whereas Q̃t is investor i’s

vector of discounted allocations to the various futures, q̃i is their vector of discounted allocations

to the frequency portfolios, with

Q̃i = Λq̃i. (15)

Rows of Λ represent portfolio weights on different dates and columns represent different frequency

portfolios. qi is then the vector of investor i’s allocations to the various frequency portfolios.

In what follows, we use the index j = 1, ..., T to identify each column of Λ, or equivalently,

each frequency-domain vector. The jth column of Λ contains a vector that fluctuates at frequency

ωb j2c = 2π
⌊
j
2

⌋
/T , where b·c is the integer floor operator.11 So there are two vectors, a sine and

a cosine, for each characteristic frequency, with the exceptions of j = 1 (frequency 0, the lowest

possible) and j = T (frequency T
2 , the highest possible).

Note also that Λ has the property that Λ−1 = Λ′, so that frequency-domain vectors can be

obtained through

q̃i = Λ′Q̃i. (16)

In the same way that qi represents weights on frequency-specific portfolios, d ≡ Λ′D is a

representation of the realization of fundamentals written in terms of frequencies instead of time.

The first element of d, for example, is proportional to the realized sample mean of D. Equivalently,

d is the set of regression coefficients of D on the columns of Λ (which generate an R2 of 1).

As a simple example, consider the case with T = 2. The low-frequency component of dividends

is then d0 = (D1 +D2)/
√

2 and the high-frequency component of is d1 = (D1−D2)/
√

2. Investors

trade the low-frequency component d0 by buying an equal amount of the claims on D1 and D2.

11bxc is the largest integer that is less than or equal to x.
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Conversely, investors trade the high-frequency component d1 by buying offsetting amounts of the

claims on D1 and D2.

The most important feature of the frequency transformation is that it approximately diagonal-

izes the variance matrices. We now formalize that idea.

Definition 2 For an n× n matrix A with elements al,m, the weak matrix norm is

|A| ≡

(
1

n

n∑
l=1

n∑
m=1

a2
l,m

)1/2

. (17)

If |A−B| is small, then the elements of A and B are close in mean square.

The frequency transform will lead us to study the spectral densities of the various time series:

Definition 3 The spectrum at frequency ω of a stationary time series Xt is

fX (ω) ≡ σX,0 + 2
∞∑
t=1

cos (ωt)σX,t, (18)

where σX,t = cov (Xs, Xs−t) . (19)

The spectrum, or spectral density, is used widely in time series analysis. The usual interpretation

is that it represents a variance decomposition. fX (ω) measures the part of the variance of Xt

associated with fluctuations at frequency ω, which is formalized as follows.

Lemma 1 For any stationary time series {Xt}Tt=1, with frequency representation x ≡ Λ′X, the

elements of the vector x are approximately uncorrelated in the sense that the covariance matrix of

x, Σx ≡ Λ′ΣXΛ, is nearly diagonal,

|Σx − diag (fX)| ≤ bT−1/2, (20)

and x converges in distribution to

x→d N (0, diag (fX)) , (21)

where b is a constant that depends on the autocorrelations of X,12 and diag (fX) denotes a matrix

with the vector
{
fX
(
ωbj/2c

)}T
j=1

on the main diagonal and zeros elsewhere.13

Proof. These are textbook results (e.g. Brockwell and Davis (1991) and Gray (2006)). Appendix

C.1 provides a derivation of the inequality (20) specific to our case. The convergence in distribution

follows from Brillinger (1981), theorem 4.4.1.

12Specifically, b = 4
(∑∞

j=1 |jσX,j |
)

.
13A requirement of this lemma, which we impose for all the stationary processes studied in the paper, is that

the autocovariances are summable in the sense that
∑∞
j=1 |jσX,j | is finite (which holds for finite-order stationary

ARMA processes, for example). Trigonometric transforms of stationary time series converge in distribution under
more general conditions, though. See Shumway and Stoffer (2011), Brillinger (1981), and Shao and Wu (2007).
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Lemma 1 says that Λ approximately diagonalizes all stationary covariance matrices. So the

frequency-specific components of fundamentals, prices, and noise trader demand are all (approx-

imately) independent when analyzed in terms of frequencies. That is, d = Λ′D, yi = Λ′Yi, and

z = Λ′Z all have asymptotically diagonal variance matrices. That independence will substantially

simplify our analysis, and it is a special property of the sines and cosines, as opposed to other

conceptions of frequencies.14

2.3 Market equilibrium in the frequency domain

2.3.1 Approximate diagonalization

Instead of solving jointly for the prices of all futures, the approximate diagonalization result al-

lows us to solve a series of parallel scalar problems, one for each frequency. Intuitively, since

the frequency-specific portfolios have returns that are uncorrelated with each other, the investors’

utility can be written as a sum of mean-variance optimizations

U0,i ≈ max
{qi,j}

T−1
T∑
j=1

{
E0,i [q̃i,j (dj − pj)]−

1

2
ρ−1V ar0,i [q̃i,j (dj − pj)]

}
. (22)

In what follows, we solve the model using the approximation for U0,i, and then show that it converges

to the true solution from Admati (1985). When utility is completely separable across frequencies,

there is an equilibrium frequency-by-frequency:

Solution 1 Under the approximations d ∼ N (0, diag (fD)) and z ∼ N (0, diag (fZ)), the prices of

the frequency-specific portfolios, pj, satisfy, for all j

pj = a1,jdj + a2,jzj (23)

a1,j ≡ 1−
ρ−1k + f−1

D,j(
ρf−1
avg,j

)2
f−1
Z,j + f−1

avg,j + f−1
D,j + ρ−1k

(24)

a2,j ≡
a1,j

ρf−1
avg,j

(25)

where f−1
avg,j ≡

∫
i f
−1
i,j di is the average precision of the agents’ signals at frequency j.

Proof. See appendix C.2.

The price of the frequency-j portfolio depends only on fundamentals and supply at that fre-

quency due to the independence across frequencies. As usual, the informativeness of prices, through

14Finally, it is should be noted that infill asymptotics, where T grows by making the length of a time period
shorter, are not sufficient for lemma 1 to hold. What is important is essentially that T is large relative to the range
of autocorrelation of the process X. So, for example, if fundamentals have nontrivial autocorrelations over a horizon
of a year, then it is important that T be substantially larger than a year. Van Binsbergen and Koijen (2017), for
example, examine data on dividend futures with maturities as long as 16 years.
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a1,j , is increasing in the precision of the signals that investors obtain, while the impact of noise

trader demand on prices is decreasing in signal precision and risk tolerance.

These solutions for the prices are the standard results for scalar markets. What is different here

is simply that the agents chose exposures across frequencies, rather than across dates; pj is the

price of a portfolio whose exposure to fundamentals fluctuates over time at frequency 2π bj/2c /T .

Both prices and demands at frequency j depend only on signals and supply at frequency j – the

problem is completely separable across frequencies.

In what follows, we assume that k is sufficiently small that ka2,j < 1 for all j, which simply

ensures that z represents a positive demand shock in equilibrium (though most of the results hold

without that assumption). The restriction is that noise trader demand not be too sensitive to

prices; in the literature k is usually equal to zero.

2.3.2 Quality of the approximation

While solution 1 is an approximation, its error can be bounded. The time domain solution is

obtained from the frequency domain solution by premultiplying by Λ (from equation (15)), and we

have,

Proposition 1 The difference between solution 1 and the exact Admati (1985) solution is small

in the sense that

∣∣A1 − Λdiag (a1) Λ′
∣∣ ≤ c1T

−1/2 (26)∣∣A2 − Λdiag (a2) Λ′
∣∣ ≤ c2T

−1/2 (27)

for constants c1 and c2. Furthermore, the variances of the approximation error for prices and

quantities are bounded by:

|V ar (Λp− P )| ≤ cPT
−1/2 (28)∣∣∣V ar (Λq̃i − Q̃i

)∣∣∣ ≤ cQT
−1/2 (29)

for some constants cP and cQ.

Proof. See appendix C.3.

Proposition 1 shows that the frequency domain solution to the market equilibrium provides a

close approximation to the true solution, in the sense that the solution in (23), once it is rotated

back to the time domain, converges to equations (7-9). Moreover, Λp is stochastically close to P

in the sense that the variance of the pricing errors is of order T−1/2. So the standard time-domain

solution for stationary time series processes becomes arbitrarily close to a simple set of parallel

scalar problems in the frequency domain for large T .
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2.4 Optimal information choice in the frequency domain

The analysis so far takes the precision of the signals as fixed. Following Van Nieuwerburgh and

Veldkamp (2009) and Kacperczyk, Van Nieuwerburgh, and Veldkamp (2016; KVNV), we now allow

investors to choose their signal precisions, Σ−1
i to maximize the expectation of their mean-variance

objective (3) subject to an information cost,

max
{fi,j}

E−1

[
Ui,0 | Σ−1

i

]
− ψ

2T
tr
(
Σ−1
i

)
, (30)

where E−1 is the expectation operator on date −1, i.e. prior to the realization of signals and

prices (as distinguished from Ei,0, which conditions on P and Yi), and ψ is the per-period cost of

information. Total information here is measured by the trace operator tr
(
Σ−1
i

)
.15

Given the optimal demands, an agent’s expected utility is linear in the precision they obtain at

each frequency.

Lemma 2 Each informed investor’s expected utility at time −1 may be written as a function of

their own signal precisions, f−1
i,j , and the average across other investors, f−1

avg,j ≡
∫
i f
−1
i,j di, with

E−1 [U0,i | {fi,j}] =
1

2T

T∑
j=1

λj

(
f−1
avg,j

)
f−1
i,j + constant, (31)

where the constant does not depend on investor i’s precision.

Proof. See appendix C.4.

λj (x) is a function determining the marginal benefit of information at each frequency, with

the properties λj (x) > 0 and λ′j (x) < 0 for all x ≥ 0. It is possible to show that λj

(
f−1
avg,j

)
=

V ar [dj − pj ].16

Since expected utility and the information cost are both linear in the set of precisions that

agent i chooses,
{
f−1
i,j

}
, it immediately follows that agents purchase signals at whatever subset of

frequencies has λj

(
f−1
avg,j

)
≥ ψ.

Solution 2 Information is allocated so that

f−1
avg,j =

{
λ−1
j (ψ) if λj (0) ≥ ψ,

0 otherwise.
(32)

Because attention cannot be negative, when λj (0) ≤ ψ, no attention is allocated to frequency

j. Otherwise, attention is allocated so that its marginal benefit and its marginal cost are equated.

15KVNV show that the results here are robust to various perturbations of the assumptions: (1) rather than using
the trace operator, information can be measured through the entropy of the signals; (2) investors can be given a fixed
budget of information rather than a fixed cost; (3) it can be made costly for investors to pay attention to prices in
addition to their signals.

16These results are established as part of the proof of lemma 2, in appendix C.4.
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Note, though, that this result does not pin down precisely how any specific investor’s attention is

allocated; this class of models, with a non-convex information cost, only determines the aggregate

allocation of attention across frequencies. For the purposes of studying price informativeness,

though, characterizing this aggregate allocation is all that is necessary.

3 The consequences of restricting investment frequencies for prices

This section focuses on the effects on prices of restrictions on the frequencies at which investment

strategies can operate. There are many real-world examples of such restrictions. Some institutional

investors face constraints on the speed at which they can change their portfolio weights. For

example, a pension fund or endowment might have a policy portfolio that it targets, the weights of

which are only updated on an annual or quarterly basis at board meetings. Other investors have

restrictions that keep them from holding positions for too long. Market makers and trading desks

may have policies restricting their positions to net to zero at the end of each day (e.g. Brock and

Kleidon (1992) and Menkveld (2013)).

Those constraints on portfolio managers are in a sense imposed by their own investors. Regula-

tors may also impose restrictions on the types of strategies that investors may undertake. Some of

those policies are aimed at investors who trade at the very highest frequencies (such as the CFTC’s

recently proposed Regulation AT; see CFTC (2016)). But there are also proposals to discourage

portfolio turnover at the monthly or annual level. The US tax code, for example, encourages holding

assets for at least a year through the higher tax rates on short-term capital gains.17

Section 5 also shows that a tax on changes in positions over time (approximately, trading)

affects most strongly high-frequency investment strategies. So the restrictions in this section are

also similar to imposing a quadratic trading tax.

3.1 Restricting investment frequencies

The assumption in this section is that investors are restricted to setting q̃i,j = 0 for j ∈ R. We

leave the noise traders unconstrained, assuming they are perhaps less regulated (like retail investors,

in many ways), or that their demand is induced by a rotating set of people, with no individual

necessarily trading at high frequency.

Intuitively, if an investor is restricted from exposures at frequencies higher than a day, then they

can effectively only choose exposures once per day. Rather than forcing the investor to literally

only trade once a day, though, the restriction in our case corresponds to a portfolio that varies

smoothly between days. So (approximately) if the investor can choose daily exposures, then their

actual exposures, minute-by-minute, might be represented by a spline that smooths between the

daily exposures.

17There have been recent proposals to further expand such policies (a plan to create a schedule of capital gains
tax rates that declines over a period of six years was attributed to Hillary Clinton during the 2016 US Presidential
election; see Auxier et al. (2016)).

15



More formally, a restriction on trading frequencies reduces the degrees of freedom that an

investor has in making choices. Suppose we had a model where each time period is an hour, and

T is a year, or 1625 trading hours. A restriction that investors cannot invest at a frequency higher

than a day (6.5 hours) would mean that they would go from a strategy with 1625 degrees of freedom

to one with only 250. A pension that sets a portfolio once a quarter would have only four degrees

of freedom. In that sense, then, the restrictions we analyze in this section are similar to a shift

from a continuous market to one with infrequent batch auctions, as in Budish, Cramton, and Shim

(2015). While that paper proposes holding the auctions still very frequently (i.e. more than once

per second), a more aggressive restriction could have auctions only once per day, or once per hour.

Appendix G examines the version of the model in which fundamentals are stationary in differ-

ences instead of levels (i.e. they have a unit root). In that case, the analysis in fact goes through

nearly identically – frequency restrictions still represent decreases in the degrees of freedom avail-

able to investors – but with a single small change: the lowest frequency portfolio, rather than being

one that puts equal weight on fundamentals on all dates, puts weight on fundamentals only on the

final date, T . Intuitively, an investor who wants to take a position in long-run growth rates does

that by buying a claim just to the level on date T . On the other hand, an investor who holds

a portfolio that loads on rapid changes in the growth rate of fundamentals will have a portfolio

with weights on the level of fundamentals that also change quickly. So in that case, the example of

restricting investment at frequencies higher than a day continues to impose the same limit on the

set of strategies investors can choose from.

Derivations of the results in the remainder of this section can be found in appendix D.

3.2 Results

We begin by describing price informativeness at different frequencies to demonstrate our key sepa-

ration result. We then show what happens to prices of standard claims in the time domain.

3.2.1 Price informativeness across frequencies

In terms of frequencies, we obtain a complete separation: prices become uninformative at restricted

frequencies, while remaining unaffected at unrestricted frequencies.

Result 1 When trade by sophisticated investors is restricted at a set of frequencies R, prices satisfy

pj =

{
k−1zj for j ∈ R

a1,jdj + a2,jzj otherwise

}
, (33)

where a1 and a2 are the same as those defined in solution 1.

Intuitively, when sophisticated traders are restricted, prices depend only on sentiment, since

the people with information cannot express their opinions. Moreover, the market becomes illiquid,

and it is cleared purely through prices rather than quantities.
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Since the solution for information acquisition at a frequency j does not depend on anything

about any other frequency, the information acquired at a frequency j /∈ R is also unaffected by the

policy. We then have the result that:

Corollary 1.1 When investors are restricted from holding portfolios with weights that fluctuate at

some set of frequencies j ∈ R, then prices at those frequencies, pj, become completely uninformative

about dividends. The informativeness of prices for j /∈ R about dividends is unchanged. More

formally, V ar [dj | pj ] for j /∈ R is unaffected by the restriction. For j ∈ R, V ar [dj | pj ] = V ar [dj ].

3.2.2 Price informativeness across dates

The fact that prices remain equally informative at some frequencies does not mean that they remain

equally informative for any particular date. They are linked through

V ar (Dt | P ) =
1

T

T∑
j=1

V ar [dj | pj ] . (34)

The variance of an estimate of fundamentals conditional on prices at a particular date is equal

to the average of the variances across all frequencies.18 So when uncertainty rises at some set of

frequencies, the informativeness of prices for fundamentals on every date falls by an equal amount.

Corollary 1.2 Investment restrictions reduce price informativeness for fundamentals on all dates

by equal amounts, and by an amount that weakly increases with the number of frequencies that are

restricted.

If a person is making decisions based on estimates of fundamentals from prices and they are

worried that prices are contaminated by high-frequency noise due to a restriction on high-frequency

investment, a natural response would be to examine an average of fundamentals and prices over

time (across maturities of futures contracts).

Corollary 1.3 Under the asymptotic result for variance matrices, the informativeness of prices

for the sum of fundamentals depends only on informativeness at the lowest frequency:

V ar

(
T−1

T∑
t=1

Dt | P

)
= V ar

[
T−1/2d0 | p0

]
, (35)

where d0 is the lowest frequency portfolio – with equal weight each date – and p0 is its price.

Result 1.3 follows immediately from the definition of d0 and the independence across frequencies

in the solution. It shows that the informativeness of prices for moving averages of fundamentals

depends only on the very lowest frequency. So even if prices have little or no information at high

18This result is proven in appendix 4.2.
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frequencies – V ar [dj | pj ] is high for large j – there need not be any degradation of information

about averages of fundamentals over multiple periods, as they depend primarily on precision at

lower frequencies (smaller values of j).

More concretely, going back to our example of oil futures, when investors are not allowed to

use high-frequency investment strategies, prices become noisier, making it more difficult to obtain

an accurate forecast of the spot price of oil at some specific moment in the future. But if one is

interested in the average of spot oil prices over a year, on the other hand, then we would expect

futures prices to remain informative under restrictions on high-frequency strategies. It is possible

to derive a similar result for shorter moving averages; in that case the weights on the frequencies

are given by the Fejér kernel.

In the case where fundamentals are stationary in terms of growth rates instead of levels, the

results in this section also hold, but replacing Dt by its first difference. In particular, result 1.3 then

states that V ar(DT | P ) becomes arbitrarily close to the variance of the lowest frequency portfolio.

This is unsurprising since, as we had previously noted, in the difference-stationary case, the lowest

frequency portfolio is the one that places weight only on DT . In that case, the prediction of the

model is that V ar (DT | P ) is unaffected by restrictions on high-frequency investment.

When low-frequency investment strategies are restricted, on the other hand, as in the case of

a trading desk that cannot have exposure to cycles lasting longer than a day, then it is natural to

examine the informativeness of differences in prices across dates. As an example, we can consider

the variance of the first difference of fundamentals.

Corollary 1.4 The variance of an estimate of the change in fundamentals across dates conditional

on observing the vector of prices is

V ar [Dt −Dt−1 | P ] =
T∑
j=1

2
(
1− cos

(
ωbj/2c

))
V ar [dj | pj ] . (36)

The function 2 − 2 cos (ω) is equal to 0 at ω = 0 and rises smoothly to 4 at the highest

frequency, ω = π. So period-by-period changes in fundamentals are driven primarily by high-

frequency variation. Reductions in price informativeness at low frequencies then have relatively

large effects on moving averages and small effects on changes, while the reverse is true for reductions

in informativeness at high frequencies.

To summarize, any restriction on investment reduces price informativeness for any particular

date. But when high-frequency investment is restricted, there is little change in the behavior of

moving averages of prices. So if a manager is making investment decisions based on fundamentals

only at a particular moment, then that decision will be hindered by the policy since prices now

have more noise. But if decisions are made based on averages of fundamentals over longer periods,

e.g. over a week or a month, then the model predicts that there need not be adverse consequences.
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3.2.3 Return volatility

Corollary 1.5 Given an information policy f−1
avg,j, the variance of returns at frequency j, rj ≡

dj − pj is

V ar (rj) =

{
fD,j +

fZ,j
k2

for j ∈ R
min (ψ, λj (0)) otherwise

. (37)

Moreover, the variance of returns at restricted frequencies satisfies V ar(rj) > fD,j +
fZ,j

(k+ρf−1
D,j)

2
,

which is the variance that returns would have at the same frequency if investment were unrestricted

but agents were uninformed.

The volatility of returns at a restricted frequency is higher than it would be if the sophisticated

investors were allowed to trade, even if they gathered no information. Intuitively, when uninformed

active investors have risk-bearing capacity (ρ > 0), they absorb some of the exogenous demand by

simply trading against prices, buying when prices are below their means and selling when they are

above. The greater is the risk-bearing capacity, the smaller is the effect of sentiment volatility on

return volatility. Thus, the restriction affects return volatilities through its effects on both liquidity

provision and information acquisition.

Restricting sophisticated investors from following high-frequency strategies in this model can

thus substantially raise asset return volatility at high frequencies – it can lead to, for example, large

minute-to-minute fluctuations in prices (though those fluctuations in prices are, literally, variations

in prices across maturities for different futures contracts on date 0). Sophisticated traders typically

play a role of smoothing prices across maturities, essentially intermediating between excess demand

in one minute and excess supply in the next. When they are restricted from holding positions in

futures that fluctuate from minute to minute, they can no longer provide that intermediation

service, and volatility at high frequencies increases.

Finally, we note that the results in this section could be extended fairly easily to account for

more general types of restrictions, such as placing restrictions only on the trade of a subset of

agents, or perhaps bounding the size of the positions of some agents at certain frequencies.

4 Investor outcomes

This section studies how restricting high-frequency trade affects low-frequency investors. We obtain

two main results, which initially appear to be in conflict:

1. The entrance of high-frequency investors reduces the profits of low-frequency investors.

2. Restricting high-frequency investment reduces the profits and utility of low-frequency in-

vestors.

So while low-frequency investors are worse off when high-frequency investors enter the market,

cutting off high-frequency trade neither restores the old equilibrium, nor does it make the low-

frequency investors better off.
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4.1 Who are high- and low-frequency investors?

We define a high-frequency investor as one whose portfolio is driven relatively more by high-

frequency fluctuations, while a low-frequency investor holds a portfolio that is driven relatively

more by low-frequency fluctuations. That definition can be formalized by a variance decomposition,

using the fact that

V ar
(
Q̃i,t

)
=

T∑
j=1

V ar (q̃i,j) . (38)

Furthermore, the component of the variance of Q̃i,t that is driven by fluctuations at frequency j is

increasing in the precision of the signals agent i acquires at frequency j:

d

df−1
i,j

[V ar (q̃i,j)] > 0. (39)

So if two investors have the same total variance of their positions, V ar
(
Q̃1,t

)
= V ar

(
Q̃2,t

)
, but

one of them has higher-precision signals at high frequencies, i.e. f−1
1,j > f−1

2,j for j above some cutoff,

then variation in that investor’s position is driven relatively more by high-frequency components.

(39) shows that V ar (q̃i,j) is increasing in the precision of the signals that agent i receives.

When an investor has more precise signals at a given frequency, they trade more aggressively for

two reasons. First, since their signals are more precise, their demand is more sensitive to their

own signals. Second, the quality of their signals also means that they can worry less about adverse

selection, so they trade more strongly to accommodate demand shocks from noise traders.

For two investors with positions that have the same unconditional variance, the high-frequency

investor – whose fluctuations happen relatively faster – is the one with relatively more precise

signals about the high-frequency features of fundamentals. That is, high-frequency investors have

high-frequency information, and low-frequency investors have low-frequency information. As an

extreme case, we will take high-frequency investors as people whose signals have positive precision

only for j above some cutoff jHF , and low-frequency investors have signals with positive precision

only for j below some jLF with jHF > jLF .

4.2 Investor profits and utility

Result 2 Let R = D−P be the vector of returns in the time domain; investor i’s average discounted

profits are

E−1

[
Q̃′iR

]
=

T∑
j=1

(1− ka2) (−E−1 [zjrj ]) + ka1E−1 [rjdj ] + ρ
(
f−1
i,j − f

−1
avg,j

)
V ar−1 [rj ] (40)

and expected profits at each frequency are nonnegative,

E−1 [q̃i,jrj ] ≥ 0 for all i, j (41)
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with equality only if fi,j = 0 and f−1
D,j = ρf−1

avg,jf
−1
Z,jk (i.e. in a knife-edge case).

Each investor’s expected discounted profits depend on three terms. The first represents the

profits earned from noise traders. E [zjrj ] = −a2f
−1
Z < 0 since the sophisticated investors imper-

fectly accommodate their demand. When the noise traders have high demand (that is, when z is

high), they drive prices up and expected returns down. The sophisticated investors earn profits

from trading with that demand.

The second term represents the profits that the informed investors earn by buying from the

noise traders when they have positive signals on average. The coefficient ka1,j represents the slope

of the supply curve that the informed investors face.

Finally, the third term in (40) represents a reallocation of profits from the less to the more

informed sophisticated investors. An investor who has highly precise signals about fundamentals

at frequency j can accurately distinguish periods when prices are high due to strong fundamentals

to those when prices are high due to high sentiment. That allows them to earn relatively more

profits on average than an uninformed investor.

That said, an uninformed sophisticated investor does not earn negative expected profits at any

frequency, even with f−1
i,j = 0. There are always, except in a knife-edge case, profits to be earned

by trading with noise traders.

Result 2 therefore gives us two key insights. First, all investors, no matter their information,

have the ability to earn profits at all frequencies through liquidity provision. Second, all else equal,

investors who are informed about a particular frequency earn the most money from investing at

these frequencies. High-frequency investors – those with relatively more information about high-

frequency fundamentals – earn relatively higher returns at high frequencies, while low-frequency

investors earn relatively higher returns at low frequencies.

4.2.1 The entrance of high-frequency investors

The two main results of this section follow from result 2. First, consider a scenario in which

f−1
avg,j = 0 for high frequencies (i.e. for all j greater than jHF ). That is, there are initially no high-

frequency investors, perhaps because an unmodeled cost of acquiring high-frequency information is

prohibitively large. Existing investors may trade at the frequencies j > jHF , but in an uninformed

manner. What is the effect of the initial entry of high-frequency investors, i.e. a marginal increase

in f−1
avg,j , holding all other parameters fixed?

Result 3 Starting from f−1
avg,j = 0 for j > jHF , an increase in f−1

avg,j at one of those frequencies

21



reduces profits and utility of an investor for whom f−1
i,j remains unchanged. Specifically,

d

df−1
avg,j

E−1 [q̃LF,jrj ]

∣∣∣∣∣
favg,j=0

< 0 (42)

d

df−1
avg,j

E−1

[∑
t

Q̃LF,t (Dt − Pt)

]∣∣∣∣∣
favg,j=0

< 0 (43)

d

df−1
avg,j

E−1 [ULF,0]

∣∣∣∣∣
favg,j=0

< 0 (44)

where the LF subscripts denote positions and utility of a low-frequency investor. Concretely, in

an economy populated only by low-frequency investors, the entrance of high-frequency investors

increases f−1
avg,j for j > jHF and therefore reduces the expected profits at all frequencies, total

expected profits, and the utility of low-frequency investors.

The source of that result is the fact that investors with low-frequency information may still

trade at high frequencies. Suppose, for example, that not only does f−1
LF,j = 0 for high j, but

also that f−1
avg,j does also – nobody has high-frequency information. In that setting obviously any

sophisticated investor will be happy to accommodate transitory fluctuations in noise trader demand.

More concretely, an investor who has information that the long-term value of a stock is $50 will be

willing to provide liquidity in the short-run, buying when the price is below $50 and selling when

the price is higher. That liquidity provision will have high-frequency components when liquidity

demand (here noise trader demand) has high-frequency components (i.e. fz,j > 0 for j > jHF ).

That is, if there are short-run variations in sentiment, then there will be short-run variation in the

low-frequency investor’s position.

The entry of investors with high-frequency information hurts those with low-frequency infor-

mation because the new investors are better at providing high-frequency liquidity. Result 2 and

corollary 3 formalize that idea and shows that how high-frequency investors hurt low-frequency

investors – by crowding out their ability to provide liquidity. It is critical to note, though, that

result 2 still shows that the entry of high-frequency investors never reduces the profits earned by

low-frequency investors to zero, even at high frequencies.

It should also be noted that these results do not change the incentives of low-frequency investors

to acquire information at low frequencies. While they lose money from a decrease in liquidity

provision at high frequencies, their choices at low frequencies are unaffected, so if one’s primary

concern is price informativeness at low frequencies, the entry of high-frequency traders will have

no effect.

4.2.2 Restoring the previous equilibrium

If the entrance of high-frequency investors hurts the incumbent low-frequency investors, a natural

question (at least to the incumbents) might be how to restore the old equilibrium. We consider three
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possible policies: restricting or eliminating high-frequency investment, taxing trade (or variation in

positions), and restricting high-frequency information acquisition.

First, consider a restriction on high-frequency investment that says that no sophisticated in-

vestor may set qi,j 6= 0 for j above some cutoff, as in the previous section. A concrete example

of such a policy would be an infrequent batch auction mechanism (e.g. Budish, Cramton, and

Shim (2015)). Restricting trade above the daily frequency would correspond to having an auction

once per day. Result 2 shows that such a restriction would, rather than restoring the profits and

utility of the low-frequency investors, actually reduce them further. The result follows from the fact

that restricting trade eliminates the terms in the summation for j above the cutoff, which are all

nonnegative. While high-frequency investors make liquidity provision at low frequencies more dif-

ficult, outlawing high-frequency trades simply makes it impossible. So eliminating high-frequency

investment does not restore the old equilibrium – it actually compounds the effect of the entrance

of high-frequency investors.

Imposing a tax on changes in positions, specifically, a tax on (Qi,t −Qi,t−1)2, will have similar

effects to a restriction on high-frequency investment in that the tax is most costly for high-frequency

strategies. The next section provides a more complete derivation of that result. But such a tax

will be broadly similar to a blanket restriction on high-frequency investment.

The final policy response would be to somehow limit the acquisition of high-frequency infor-

mation. In the context of the model, this would represent a restriction on the ability of investors

to learn about period-to-period variation in fundamentals. Very loosely, one might think of this

as representing a restriction on the ability of investors to receive economic news continuously, and

rather force them to receive announcements that are clustered at lower frequencies. For example,

news might be released only once per day instead of on a continuous basis (which is already partially

implemented through the practice of major announcements coming outside regular equity trading

hours).

In the context of the model, a restriction on information acquisition would exactly restore the

equilibrium that exists in the absence of the high-frequency investors. Since the low-frequency

investors do not acquire high-frequency information, the restriction has no effect on them, while

the high-frequency investors can be made essentially irrelevant to the equilibrium by the removal

of their information. In terms of result 2, such a restriction would reduce f−1
avg,j to zero at high

frequencies, thus restoring the profits earned by the low-frequency investors from liquidity provision.

5 Quadratic trading costs

The restriction that investors have exactly zero exposure at certain frequencies is a natural one to

study in the model. But there are other ways of imposing limits on investors’ exposures across

frequencies. We now examine the equilibrium when there are quadratic costs of trading. We argue

that, relative to the frictionless benchmark, introducing these costs has analogous effects to the

more abstract restriction qi,j = 0 for j ∈ R. Changes in trading costs could be caused either by
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the imposition of a quadratic tax on shares traded, or by changes in the trading technology.

The model obviously does not have trade over time. However, the exposures that investors

choose in the futures market can be replicated through a commitment to trade (at a fixed price)

the fundamental on future dates. That is, define a date-t equity claim to be an asset that pays

dividends equal to the fundamental on each date from t+1 to T . Since the futures contracts involve

exchanging money only at maturity, the date-t cost of an equity claim is P equityt =
∑T−t

j=1 β
−jPt+j .

An investor’s exposure to fundamentals on date t, Qi,t can be acquired either by buying Qi,t units of

forwards on date 0 or by holding QEQi,t units of equity entering date t. In the latter case, the volume

of trade by investor i would be equal to the change in Qi,t over time. That is, ∆QEQi,t = ∆Qi,t.

We assume that investors now maximize the following objective:

U0,i = max
{Qi,t}

E0,i

[
T−1

T∑
t=1

Qi,t (Dt − Pt)

]
− 1

2
cT−1E0,i [QV {Qi}]−

1

2
bT−1E0,i

[
T∑
t=1

Q2
i,t

]
, (45)

where b > 0 is a cost of holding large positions in the assets, c ≥ 0 is a cost incurred from quadratic

variation in positions, with quadratic variation defined as:

QV {Qi} ≡

[
T∑
t=2

(Qi,t −Qi,t−1)2 + (Qi,1 −Qi,T )2

]
. (46)

The term involving b in (45) replaces the aversion to variance in the benchmark setting. That change

is made for the sake of tractability, but its economic consequences are minimal (see, e.g., Kasa,

Walker, and Whiteman (2013)). We also set discount rates to zero here to maintain tractability.

Appendix F shows that:

T−1QV {Qi} = 2
T∑
j=1

sin2
(
ωbj/2c/2

)
q2
i,j . (47)

Note that we have defined quadratic variation as the sum of the squared changes in Qi,t between

t = 2 and T plus (Qi,1 −Qi,T )2. Without the final term, there would be no cost to investors of

entering and exiting very large positions at the beginning and end of the investment period. This

term helps account for that, and has the added benefit of yielding the simple closed-form expression

in the frequency domain reported above. The right-hand side shows that the quadratic variation

in the volume induced by an investor depends on their squared exposures at each frequency scaled

by sin2
(
ωbj/2c/2

)
, which rises from 0 to 1 as j rises. Intuitively, when c > 0, holding exposure

to higher frequency fluctuations in fundamentals is more costly because it requires more frequent

portfolio rebalancing.

The equilibrium of the model is described in detail in Appendix F. Here, we highlight key

results and explain how they relate to the previous results on restricting trade frequencies.

Result 4 When c > 0, all else equal, investors’ equilibrium signal precision is higher at lower

frequencies.
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With the assumption of fixed quadratic trading costs, the marginal benefit of increasing precision

at frequency j is given by:

1

2
(c sin2

(
ωbj/2c/2

)
+ b)−1V ar [dj | pj , yi,j ]2 . (48)

In particular, it is declining with both the signal precision and the frequency of exposure. Given

that the marginal cost of information is the same across frequencies, investors choose higher signal

precisions at lower frequencies, all else equal.

The main result regarding the effect of the quadratic trading cost is the following.

Result 5 A small increase in trading costs, when starting from zero, reduces information acquisi-

tion at all frequencies except frequency 0. The effect is larger at higher frequencies. As a corollary,

the effect of an increase in trading costs on price informativeness is weaker at longer horizons.

The first part of this result suggests that if the goal is to reduce high-frequency trade, then a

quadratic tax is a more blunt instrument than placing an explicit restriction on trade at the targeted

frequencies. A tax on volume affects all investors, regardless of the strategy that they follow.

However, the second part of the result suggests that trading costs affect the highest frequencies

most strongly. The quadratic cost thus leads, endogenously, to the same changes in information

acquisition studied in the main model; namely, the variance of dividends conditional on prices,

V ar(dj |pj), falls more at higher frequencies. The corollary regarding price informativeness refers

to the fact that the variance of moving averages of the form:

V ar

(
1

n

n−1∑
m=0

Dt+m | P

)
(49)

increases less as a result of the increase in trading costs for longer horizons n. In the extreme case

of n = T , which corresponds to the frequency 0 component of the signals, the increase in trading

costs has in fact no effect on equilibrium signal precision and thus price informativeness. This can

be seen from the expression for the marginal benefit of signal precision above, which is independent

of c when j = 0.

Thus, overall, the message of the model with quadratic costs is consistent with the previous

analysis. Increasing trading costs leads to less informed trading and the effect is tilted toward

high frequencies; at lower frequencies, information acquisition decisions are less impacted. As a

result, the effect of the increase on the informativeness of prices for fundamentals at long horizons

is limited.

6 Conclusion

The aim of this paper is to understand how regulations that restrict the types of strategies that

investors may pursue affect price informativeness and investor profits and utility. We are specifically
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interested in regulations that affect the speed with which investors may turn over their positions.

In order to study that question, we need to have a setting in which investors can make meaningful

decisions about investment strategies and in which they have an endogenous information choice. We

develop a simple rotation of the standard noisy rational expectations equilibrium that incorporates

trade and information acquisition in a futures market.

Our first key result is that such a policy has precisely zero effect on the informativeness of prices

or the profitability of trading at the untargeted frequencies. This result is a natural consequence

of the independence of the problem across frequencies. Another important byproduct of this in-

dependence is that restrictions on high-frequency investment have a diminishing impact on price

informativeness as the forecast horizon increases.

Second, we show that while the entry of high-frequency investors reduces the utility and profits

of low-frequency investors, restricting high-frequency investment in response to that entry does not

make low-frequency investors better off. A buy-and-hold investor is able to provide the market

short-term liquidity – a person with a price target of $50 should be willing to accommodate tran-

sitory demand shocks that drive the price above their target. High-frequency investors are better

at such liquidity provision; this is why their entry makes buy-and-hold investors worse off. But

eliminating all high-frequency investment does not solve the problem. In fact, it makes it worse, by

eliminating entirely rents from liquidity provision for all investors. These findings make the result

that low-frequency price informativeness is unaffected by high-frequency restrictions all the more

surprising – those restrictions hurt low-frequency investors, but do not change their incentives for

information acquisition.

Our results on restricting high-frequency investment are thus mixed. Implementing these restric-

tions does not change how informative equilibrium prices are about the slow-moving components

of fundamentals. However, these restrictions affect the profits that any investor (high-frequency

or buy-and-hold) can earn from liquidity provision. So, while these restrictions might get rid of

high-frequency investors, they do not restore the status-quo for buy-and-hold types. In fact, they

make them worse off by erasing any previously earned rents from short-term liquidity provision.
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A Noise trader demand

We assume that noise traders have preferences similar to those of sophisticates, but they have

different information. They receive signals about fundamentals, and believe that the signals are

informative, although the signals are actually random. The signals are also perfectly correlated

across the noise traders, so that they do not wash out in the aggregate. They can be therefore

thought of as common sentiment shocks among noise traders. Furthermore, the noise traders

assume that prices contain no information about fundamentals.

The noise traders optimize

max
{Nt}Tt=1

T−1
T∑
t=1

βtNtE0,N [Dt − Pt]−
1

2
(ρT )−1 V ar0,N

[
T∑
t=1

βtNt (Dt − Pt)

]
(50)

where Nt is the demand of the noise traders and E0,N and V ar0,N are their expectation and variance

operators conditional on their signals.

We model the noise traders as being Bayesians who simply misunderstand the informativeness

of their signals, and ignore prices. Their prior belief, before receiving signals, is that

D ∼ N
(

0,Σprior
N

)
. (51)
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They then receive signals that they believe (incorrectly) are of the form

S ∼ N
(
D,Σsignal

N

)
. (52)

The usual Bayesian update then yields the distribution of D conditional on S,

D | S ∼ N
(

ΣN

(
Σsignal
N

)−1
S,ΣN

)
(53)

where ΣN ≡
((

Σsignal
N

)−1
+
(

Σprior
N

)−1
)−1

. (54)

So we have

E0,N [D] = ΣN

(
Σsignal
N

)−1
S (55)

V ar0,N [D] = ΣN (56)

Define Ñt ≡ βtNt and Ñ = [N1, ..., NT ]′. The optimization problem then becomes

max
Ñ

T−1Ñ ′
(

ΣN

(
Σsignal
N

)−1
S − P

)
− 1

2
(ρT )−1 Ñ ′ΣN Ñ . (57)

This has the solution:

Ñ = ρ−1Σ−1
N

(
ΣN

(
Σsignal
N

)−1
S − P

)
(58)

= ρ−1

((
Σsignal
N

)−1
S − Σ−1

N P

)
. (59)

For the sake of simplicity, we assume that ΣN = k−1I, where I is the identity matrix and k is a

parameter. (This can be obtained, for instance, by assuming that Σsignal
N = Σprior

N = 2kI). We

then have

Ñ = ρ−1
(

Σsignal
N

)−1
S − kP, (60)

so that the vector Z = (Z1, ..., ZT )′ from the main text is:

Z ≡ ρ−1
(

Σsignal
N

)−1
S, (61)

and the true variance of S, ΣS , can always be chosen to yield any particular ΣZ ≡ V ar (Z) by

setting

ΣS = ρ2Σsignal
N ΣZΣsignal

N . (62)
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B Time horizon and investment

At first glance, the assumption of mean-variance utility over cumulative returns over a long period

of time (T →∞) may appear to give investors an incentive to primarily worry about long-horizon

performance, whereas a small value of T would make investors more concerned about short-term

performance. In the present setting, that intuition is not correct – the T → ∞ limit determines

how detailed investment strategies may be, rather than incentivizing certain types of strategies.

The easiest way to see why the time horizon controls only the detail of the investment strategies

is to consider settings in which T is a power of 2 . If T = 2k, then the set of fundamental frequencies

is {
2πj/2k

}2k−1

j=0
(63)

For T = 2k−1, the set of frequencies is

{
2πj/2k−1

}2k−2

j=0
=
{

2π (2j) /2k
}2k−2

j=0
(64)

That is, when T falls from 2k to 2k−1, the effect is to simply eliminate alternate frequencies.

Reducing T does not change the lowest or highest available frequencies (which are always 0 and π,

respectively). It just discretizes the [0, π] interval more coarsely; or, equivalently, it means that the

matrix Λ is constructed from a smaller set of basis vectors.

When T is smaller – there are fewer available basis functions – Q and its frequency domain

analog q ≡ Λ′Q have fewer degrees of freedom and hence must be less detailed. So the effect

of a small value of T is to make it more difficult for an investor to isolate particularly high- or

low-frequency fluctuations in fundamentals (or any other narrow frequency range). But in no way

does T cause the investor’s portfolio to depend more on one set of frequencies than another. While

we take T → ∞, we will see that the model’s separating equilibrium features investors who trade

at both arbitrarily low and high frequencies, and T has no effect on the distribution of investors

across frequencies.

C Results on the frequency solution

C.1 Proof of lemma 1

The broad idea of the proof is as follows. Let Σ be any matrix of the form:

Σ =



σ0 σ1 ... ... σT−1

σ1 σ0 σ1 ... σT−2

... ... ... ... ...

σT−1 ... ... ... σ0


(65)
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where x0 > 0. Matrices of this type contain all the variance-covariance matrices of order T of

arbitrary weakly stationary processes. The lemma follows from “approximating” Σ by the circulant

matrix:

Σcirc = circ(σcirc) , σ ≡ (σ0, σ1 + σT−1, σ2 + σT−2, ..., σT−2 + σ2, σT−1 + σ1)′ , (66)

where, for any real vector {xi}T−1
i=0 ,

circ(x) ≡


x0 · · xT−1

xT−1 x0 · xT−2

·
x1 · · x0

 . (67)

In order to obtain this approximation, we first need the following result.

Appendix lemma 4 For any matrix Σ of the form given above, and associated circulant matrix

Σcirc, the family of vectors Λ defined in the main text exactly diagonalizes Σcirc:

ΣcircΛ = Λdiag
({
fΣ

(
ωbj/2c

)}T
j=1

)
, (68)

where each distinct eigenvalue in
{
fΣ

(
ωbj/2c

)}T
j=1

is given by:

fΣ(ωh) = σ0 + 2
T−1∑
t=1

σtcos(ωht), ωh ≡ 2πh/T, (69)

for some h = 0, ..., T2 .

Given that Λ is orthonormal,

Λ′ΣcircΛ = diag (fΣ) . (70)

The approximate diagonalization of the matrix Σ consists in writing:

Λ′ΣΛ = diag (fΣ) +RΣ, (71)

where the T × T matrix RΣ is given by:

RΣ ≡ Λ′ (Σ− Σcirc) Λ. (72)

This is an approximation in the sense that RΣ is generically small. Specifically, it is of order T−1

element-wise. The following lemma proves the first result stated in lemma 1 of the main text.
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Appendix lemma 5 For any T ≥ 2, we have:

|RΣ| ≤
4√
T

T−1∑
j=1

|jσj |, (73)

where |M | denotes the weak matrix norm, as in the main text.

Proof. Define ∆Σ = Σcirc − Σ. First note that since:

Σ(i,j) =

{
σ0 if i = j

σ|i−j| otherwise
, (74)

Σ
(i,j)
circ =

{
σ0 if i = j

σ|i−j| + σT−|i−j| otherwise
, (75)

we have:

∆Σ(i,j) =

{
0 if i = j

σT−|i−j| otherwise
(76)

where Σ(i,j) is the (i, j) element of Σ. This means that the matrix ∆Σ has constant and symmetric

diagonals. Moreover, the first subdiagonals both contain σT−1, the second contain σT−2, and so

on. That is,

∆Σ =



0 σT−1 σT−2 σ2 σ1

σT−1
. . .

. . .
. . . σ2

σT−2
. . .

. . .
. . .

. . .

. . .
. . .

. . .
. . . σT−2

σ2
. . .

. . .
. . . σT−1

σ1 σ2 σT−2 σT−1 0


(77)

Therefore,
T∑
i=1

T∑
j=1

|∆σi,j | = 2

T−1∑
j=1

|jσj |. (78)
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Let λk denote the k-th column of the matrix Λ. For any (l,m) ∈ [1, T ]2, we have:∣∣∣R(l,m)
Σ

∣∣∣ = |λ′l∆Σλm|

=

∣∣∣∣∣∣
T∑
i=1

T∑
j=1

λi,lλj,m∆σi,j

∣∣∣∣∣∣
≤

T∑
i=1

T∑
j=1

|λi,l| |λj,m| |∆σi,j |

≤
T∑
i=1

T∑
j=1

√
2√
T

√
2√
T
|∆σi,j |

= 4
T

T−1∑
j=1

|jσj |.

(79)

This implies that:

||RΣ||∞ ≤
4

T

T−1∑
j=1

|jσj |, (80)

where ||.||∞ is the element-wise max norm. The inequality for the weak norm follows from the fact

that the weak norm and the element-wise max norm satisfy |.| ≤
√
T ||.||∞.

C.2 Derivation of solution 1

To save notation, we suppress the j subscripts indicating frequencies in this section when they

are not necessary for clarity. So in this section fD, for example, is a scalar representing the

spectral density of fundamentals at some arbitrary frequency (rather than vectors, which is what

the unsubscripted variables represent in the main text).

C.2.1 Statistical inference

We guess that prices take the form

p = a1d+ a2z (81)

The joint distribution of fundamentals, signals, and prices is then d

yi

p

 ∼ N
0,

 fD fD a1fD

fD fD + fi a1fD

a1fD a1fD a2
1fD + a2

2fZ


 (82)
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The expectation of fundamentals conditional on the signal and price is

E [d | yi, p] =
[
fD a1fD

] [ fD + fi a1fD

a1fD a2
1fD + a2

2fZ

]−1 [
yi

p

]
(83)

= [1, a1]

[
1 + fif

−1
D a1

a1 a2
1 + a2

2fZf
−1
D

]−1 [
yi

p

]
(84)

and the variance satisfies

τi ≡ V ar [d | yi, p]−1 = f−1
D

1−
[

1 a1

] [ 1 + fif
−1
D a1

a1 a2
1 + a2

2fZf
−1
D

]−1 [
1

a1

]−1

(85)

=
a2

1

a2
2

f−1
Z + f−1

i + f−1
D (86)

We use the notation τ to denote a posterior precision, while f−1 denotes a prior precision of one

of the basic variables of the model. The above then implies that

E [d | yi, p] = τ−1
i

(
f−1
i yi +

a1

a2
2

f−1
Z p

)
(87)

C.2.2 Demand and equilibrium

The agent’s utility function is (where variables without subscripts here indicate vectors),

Ui = max
{Qi,t}

ρ−1E0,i

[
T−1Q̃′i (D − P )

]
− 1

2
ρ−2V ar0,i

[
T−1/2Q̃′i (D − P )

]
(88)

= max
{Qi,t}

ρ−1E0,i

[
T−1q̃′i (d− p)

]
− 1

2
ρ−2V ar0,i

[
T−1/2q̃′i (d− p)

]
(89)

= max
{Qi,t}

ρ−1T−1
∑
j

q̃i,jE0,i [(dj − pj)]−
1

2
ρ−2T−1

∑
j

q̃2
i,jV ar0,i [dj − pj ] , (90)

where the last line follows by imposing the asymptotic independence of d across frequencies (we

analyze the error induced by that approximation below). The utility function is thus entirely

separable across frequencies, with the optimization problem for each q̃i,j independent from all

others.

Taking the first-order condition associated with the last line above for a single frequency (with

q̃i, d, etc. again representing scalars, for any j), we obtain

q̃i = ρτiE [d− p | yi, p] (91)

= ρ

(
f−1
i yi +

(
a1

a2
2

f−1
Z − τi

)
p

)
(92)
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Summing up all demands and inserting the guess for the price yields

−z + k (a1d+ a2z) =

∫
i
ρ

(
f−1
i yi +

(
a1

a2
2

f−1
Z − τi

)
(a1d+ a2z)

)
di (93)

=

∫
i
ρ

(
f−1
i d+

(
a1

a2
2

f−1
Z − τi

)
(a1d+ a2z)

)
di, (94)

where the second line uses the law of large numbers. Matching coefficients on d and z then yields∫
i
ρ

(
a1

a2
2

f−1
Z − τi

)
di = −a−1

2 (1− ka2) (95)∫
i
ρf−1
i a−1

1 + ρ

(
a1

a2
2

f−1
Z − τi

)
di = k (96)

and therefore

k −
∫
i
ρf−1
i a−1

1 = a−1
2 (ka2 − 1) (97)∫

i
ρf−1
i =

a1

a2
(98)

Now define aggregate precision to be

f−1
avg ≡

∫
i
f−1
i di (99)

We then have

τi =
a2

1

a2
2

f−1
Z + f−1

i + f−1
D (100)

τavg ≡
∫
τidi =

(
ρf−1
avg

)2
f−1
Z + f−1

avg + f−1
D (101)

Inserting the expression for τi into (95) yields

a1 =
τavg − f−1

D

τavg + ρ−1k
(102)

a2 =
a1

ρf−1
avg

(103)

The expression for a1 can be written more explicitly as:

a1 =
τavg − f−1

D

τavg + ρ−1k
=

a21
a22
f−1
Z + f−1

avg + f−1
D + ρ−1k − ρ−1k − f−1

D

a21
a22
f−1
Z + f−1

avg + f−1
D + ρ−1k

(104)

= 1−
ρ−1k + f−1

D(
ρf−1
avg

)2
f−1
Z + f−1

avg + ρ−1k + f−1
D

. (105)
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The expression for a2 is invalid in the case when f−1
avg = 0. In that case, we have

a2 =
1

ρf−1
D + k

. (106)

C.3 Proof of Proposition 1

We use the notation Ō to mean that, for any matrices A and B,

|A−B| = Ō
(
T−1/2

)
⇐⇒ |A−B| ≤ bT−1/2 (107)

for some constant b and for all T . This is a stronger statement than typical big-O notation in that

it holds for all T , as opposed to holding only for some sufficiently large T . Standard properties of

norms yield the following result. If |A−B| = Ō
(
T−1/2

)
and |C −D| = Ō

(
T−1/2

)
, then

|cA− cB| = Ō
(
T−1/2

)
(108)∣∣A−1 −B−1

∣∣ = Ō
(
T−1/2

)
(109)

|(A+ C)− (B +D)| = Ō
(
T−1/2

)
(110)

|AC −BD| = Ō
(
T−1/2

)
(111)

In other words, convergence in weak norm carries through under addition, multiplication, and

inversion. Following the time domain solution (252), A1 and A2 can be expressed as a function of

the Toeplitz matrices ΣD, ΣZ and Σavg using those operations. it follows that |A1 − Λdiag (a1) Λ′| ≤
c1T

− 1
2 for some constant c1, and the same holds for A2 for some constant c2.

For the variance of prices, we define

R1 ≡ A1 − Λdiag (a1) Λ′, (112)

R2 ≡ A2 − Λdiag (a2) Λ′. (113)

In what follows, we use the strong norm ||.||, defined as:

||A|| = max
x′x=a

(
x′A′Ax

) 1
2 . (114)

Finally, we use the following property of the weak norm: for any two square matrices A, B of size

T × T ,

|AB| ≤
√
T |A| |B| . (115)

The proof for this inequality is standard and reported at the end of this section. We then have the
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following:

|V ar [P − Λp]| =
∣∣V ar [(A1 − Λa1Λ′)D + (A2 − Λa2Λ′)Z

]∣∣ (116)

≤
∣∣R1ΣDR

′
1

∣∣+
∣∣R2ΣZR

′
2

∣∣ (117)

≤
√
T (|R1ΣD| |R1|+ |R2ΣZ | |R2|) (118)

≤
√
T
(
‖ΣD‖ |R1|2 + ‖ΣZ‖ |R2|2

)
(119)

≤
√
TK

(
|R1|2 + |R2|2

)
. (120)

The second line follows from the triangle inequality. The third line comes from property (115). The

fourth line uses the fact that for any two square matrices G,H, ||GH|| ≤ ‖G‖ |H|; for a proof, see

Gray (2006), lemma 2.3. The last line follows from the assumption that the eigenvalues of ΣD and

ΣZ are bounded. Indeed, since ΣD and ΣZ are symmetric and real, they are Hermitian; following

Gray (2006), eq. (2.16), we then have ‖ΣZ‖ = maxt |αZ,t| and ‖ΣD‖ = maxt |αD,t|, where αX,t

denotes the eigenvalues of the matrix X.

Given that |R1| ≤ c1T
− 1

2 and |R2| ≤ c2T
− 1

2 , this implies:

|V ar [P − Λp]| ≤ K
√
T
(
c2

1 + c2
2

)
T−1 (121)

= cPT
− 1

2 . (122)

A similar proof establishes the result for
∣∣∣V ar [Q̃− Λq̃

]∣∣∣.
To prove inequality (115), note that:

|AB|2 = 1
T

∑
m,n

(
T∑
t=1

amtbtn

)2

≤ 1
T

∑
m,n

(
T∑
t=1

a2
mt

)(
T∑
t=1

b2tn

)

= 1
T

(∑
m,t

a2
mt

)(∑
n,t

b2nt

)

= T

(
1
T

(∑
m,t

a2
mt

))(
1
T

(∑
n,t

b2nt

))
= T |A|2 |B|2 ,

(123)

so that |AB| ≤
√
T |A| |B| . In this sequence of inequalities, going from the second to the third line

uses the Cauchy-Schwarz inequality.
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C.4 Proof of lemma 2

First, since the trace operator is invariant under rotations,

tr
(
Σ−1
i

)
=
∑
j

f−1
i,j . (124)

The information constraint is linear in the frequency-specific precisions. Investors also face a

technical constraint that the elements of fi,j corresponding to paired sines and cosines must have

the same value. That is, if bj/2c = bk/2c, then fi,j = fi,k; this condition is necessary for εi,t to be

stationary.

Inserting the optimal value of qi,j into the utility function, we obtain

E−1 [Ui,0] ≡ 1

2
E

T−1
∑
j

τi,jE [dj − pj | yi,j , pj ]2
 (125)

Ui,0 is utility conditional on an observed set of signals and prices. E−1 [Ui,0] is then the expectation

taken over the distributions of prices and signals.

V ar [E [dj − pj | yi,j , pj ]] is the variance of the part of the return on portfolio j explained by

yi,j and pj , while τ−1
i,j is the residual variance. The law of total variance says

V ar [dj − pj ] = V ar [E [dj − pj | yi,j , pj ]] + E [V ar [dj − pj | yi,j , pj ]] (126)

where the second term on the right-hand side is just τ−1
i,j and the first term is E

[
E [dj − pj | yi,j , pj ]2

]
since everything has zero mean. The unconditional variance of returns is

V ar(rj) = V ar [dj − pj ] = (1− a1,j)
2 fD,j +

a2
1,j(

ρf−1
avg,j

)2 fZ,j . (127)

So then

E−1 [Ui,0] =
1

2
T−1

∑
j

[(
(1− a1,j)

2 fD,j +
a2

1,j(
ρf−1
avg

)2 fZ,j
)
τi,j − 1

]
. (128)

We thus obtain the result that agent i’s expected utility is linear in the precision of the signals that

they receive (since τi,j is linear in f−1
i,j ; see appendix equation 100). Now define

λj

(
f−1
avg,j

)
≡ (1− a1,j)

2fD,j +

(
a1,j

ρf−1
avg,j

)2

fZ,j = V ar(rj). (129)
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From equations (101)-(102), λj can be re-written as:

λj

(
f−1
avg,j

)
=
fD,j

(
f−1
D,j + ρ−1k

)2
+ (ρf−1

avg,j)
2f−1
Z,j + fZ,jρ

−2(
(ρf−1

avg,j)
2f−1
Z,j + f−1

D,j + ρ−1k + f−1
avg,j

)2 , (130)

which can be further decomposed as:

λj

(
f−1
avg,j

)
= 1

((ρf−1
avg,j)

2f−1
Z,j+f

−1
D,j+ρ

−1k+f−1
avg,j)

2

+
fZ,j−

f−1
avg,j
ρ

((ρf−1
avg,j)

2f−1
Z,j+f

−1
D,j+ρ

−1k+f−1
avg,j)

2

+
ρ−1k(1+f−1

D,jρ
−1k)

((ρf−1
avg,j)

2f−1
Z,j+f

−1
D,j+ρ

−1k+f−1
avg,j)

2

(131)

Each of these three terms is decreasing in f−1
avg,j , so that the function λj (·) is decreasing.

D Results on price informativeness with restricted frequencies

D.1 Result 1 and corollaries 1.1 and 1.5

When there are no active investors and just exogenous supply, we have that 0 = zj + kpj and so:

pj = k−1zj , (132)

rj = dj − k−1zj . (133)

Because of the separability of information choices across frequencies, the coefficients a1,j and a2,j

are unchanged at all other frequencies. Moreover, it is clear that V ar(dj |pj) = V ar(dj) at the

restricted frequencies, since prices now only carry information about supply, which is uncorrelated

with dividends.

Note that for any j ∈ R,

V ar(rj) = fD,j +
fZ,j
k2

. (134)

Additionally, if trading at that frequency were not restricted, but the investors endogenously chose

not to allocate any attention to the frequency, the return volatility would be:

V arunrestr.(rj) = λj(0) = fD,j +
fZ,j(

k + ρf−1
D,j

)2 < V ar(rj). (135)

D.2 Corollary 1.2 and result 1.4

Under the diagonal approximation, we have:

D | P ∼ N
(
D̄,Λdiag

(
τ−1

0

)
Λ′
)

(136)
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where τ0 is a vector of frequency-specific precisions conditional on prices, as of time 0. Given the

independence of prices across frequencies, the j-th element of τ0 is:

τ−1
0,j = V ar(dj | pj). (137)

Using this expression, we can compute:

V ar (Dt | P ) = 1′tΛdiag
(
τ−1

0

)
Λ′1t (138)

=
(
Λ′1t

)′
diag

(
τ−1

0

) (
Λ′1t

)
(139)

=
∑
j

λ2
t,jV ar(dj | pj) (140)

= λ2
t,0V ar(d0|p0) + λ2

t,T
2

V ar(dT
2
| pT

2
) +

T/2−1∑
k=1

(
λ2
t,2k + λ2

t,2k+1

)
V ar(dk | pk)(141)

where 1t is a vector equal to 1 in its t-th element and zero elsewhere, and λt,j is the t, j element of

Λ. The last line follows from the fact that all the spectra have fX,2k = fX,2k+1 for 0 < k < T/2−1.

Furthermore, note that for 0 < k < T/2− 1,

λ2
t,2k + λ2

t,2k+1 =
2

T
cos (ωk (t− 1))2 +

2

T
sin (ωk (t− 1))2 (142)

=
2

T
(143)

which yields equation (34). Result 3 immediately follows from this expression.

Result 1.4 uses the fact that

V ar (Dt −Dt−1 | P ) = (λt,1 − λt−1,1)2 τ−1
0,1 + (λt,T − λt−1,T )2 τ−1

0,T
2

(144)

+

T/2−1∑
k=1

[
(λt,2k − λt−1,2k)

2 + (λt,2k+1 − λt−1,2k+1)2
]
τ−1

0,k , (145)

and the fact that (cos(x)− cos(y))2 + (sin(x)− sin(y))2 = 4 sin
(

1
2(x− y)

)2
= 2 (1− cos(x− y)).
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E Results on investor outcomes

E.1 Result 2

Expression (38) in the main text follows from the steps used in appendix D.2. Recall from (92)

that, omitting the j notation,

q̃i = ρ

(
f−1
i yi +

(
a1

a2
2

f−1
Z − τi

)
p

)
(146)

= ρf−1
i εi + ρ

(
f−1
i +

(
a1

a2
2

f−1
Z − τi

)
a1

)
d+ ρ

(
a1

a2
2

f−1
Z − τi

)
a2z (147)

Recall also that:

τi =

(
a1

a2

)2

f−1
Z + f−1

D + f−1
i , (148)

so that:

q̃i = ρ

(
τi −

(
a1

a2

)2

f−1
Z − f

−1
D

)
εi + ρ

(
f−1
i +

(
a1

a2
2

f−1
Z − τi

)
a1

)
d+ ρ

(
a1

a2
2

f−1
Z − τi

)
a2z (149)

Moreover,

f−1
i − a1τi +

(
a1

a2

)2

f−1
Z = τi −

(
a1

a2

)2

f−1
Z − f

−1
D − a1τi +

(
a1

a2

)2

f−1
Z (150)

= (1− a1)τi − f−1
D . (151)

Therefore

ρ−1q̃i =

(
τi −

(
a1

a2

)2

f−1
Z − f

−1
D

)
εi +

(
(1− a1)τi − f−1

D

)
d+

(
a1

a2
f−1
Z − a2τi

)
z, (152)

so that

ρ−2V ar (q̃i) =

(
τi −

(
a1

a2

)2

f−1
Z − f

−1
D

)
+
(
(1− a1)τi − f−1

D

)2
fD +

(
a1

a2
f−1
Z − a2τi

)2

fZ . (153)
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(where the first term uses the fact that V ar
(
f−1
i εi

)
= f−1

i ). The derivative of this expression with

respect to τi is:

ρ−2∂V ar (q̃i)

∂τi
= 2τi

(
(1− a1)2fD + a2

2fZ
)
− 1

≥ 2

(
f−1
D +

(
a1
a2

)2
f−1
Z

)(
(1− a1)2fD + a2

2fZ
)
− 1

= 2

(
(1− a1)2 + a2

2fZf
−1
D + (1− a1)2

(
a1
a2

)2
f−1
Z fD + a2

1

)
− 1

= 2

(
1− 2a1(1− a1) + a2

2fZf
−1
D + (1− a1)2

(
a1
a2

)2
f−1
Z fD

)
− 1

= 2

(
−2a1(1− a1) + a2

2fZf
−1
D + (1− a1)2

(
a1
a2

)2
f−1
Z fD

)
+ 1

= 2
(

(1− a1)
(
a1
a2

)
(f−1
Z fD)

1
2 − a2(f−1

Z fD)−
1
2

)2
+ 1

> 0,

(154)

where to go from the first to the second line, we used the fact that τi ≥
(
a1
a2

)2
f−1
Z +f−1

D , and where

we also used the fact that a1 ≤ 1. Since τi is a monotonic transformation of f−1
i , this establishes

equation (39) from the main text.

For result 2, first note that E−1

[
Q̃′iR

]
= E−1 [q̃′iΛ

′Λr] = E−1 [q̃ir] =
∑

j E−1 [q̃i,jrj ] , where

the last equality follows from the diagonal approximation. Moreover, straightforward but tedious

algebra shows that:

f−1
i +

(
a1

a2
2

f−1
Z − τi

)
a1 = ρ(f−1

i − f
−1
avg)(1− a1) + ka1, (155)(

a1

a2
2

f−1
Z − τi

)
a2 = −ρ(f−1

i − f
−1
avg)a2 + (ka2 − 1). (156)

We can use these expressions, and the fact that r = (1− a1)d− a2z to re-write q̃i as:

q̃i = ρf−1
i εi + ρ

(
f−1
i − f

−1
avg

)
r + ka1d+ (ka2 − 1) z. (157)

Therefore,

E−1 [q̃ir] = ρ
(
f−1
i − f

−1
avg

)
V ar (r) + ka1E−1 [rd] + (ka2 − 1)E−1 [rz] , (158)

which is the decomposition from result 2.

The result that expected profits are nonnegative is a simple consequence of the investors’ ob-

jective:

max
{q̃i,j}

ρ−1T−1
∑
j

E0,i [q̃i,j (dj − pj)]−
1

2
ρ−2T−1

∑
j

V ar0,i [q̃i,j (dj − pj)] (159)
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Since the variance is linear in q̃2
i,j , if E0,i [q̃i,jrj ] < 0, utility can always be increased by setting

q̃i,j = 0 (or, even more, by reversing the sign of q̃i,j). In order for E−1 [q̃i,jrj ] = 0, it must be the

case that V ar−1,i [E0,i [dj − pj ]] = 0, since any deviation of E0,i [dj − pj ] will cause the investor to

optimally take a position. We have, from above,

a1 =
τavg − f−1

D

τavg + ρ−1k
=

(
ρf−1
avg

)2
f−1
Z + f−1

avg(
ρf−1
avg

)2
f−1
Z + f−1

avg + f−1
D + ρ−1k

(160)

a2 =
a1

ρf−1
avg

(161)

τavg ≡
(
ρf−1
avg

)2
f−1
Z + f−1

avg + f−1
D (162)

The expression for a2 is invalid in the case when f−1
avg = 0. In that case, we have

E [d | yi, p] = τ−1
i

(
f−1
i yi +

a1

a2
2

f−1
Z p

)
(163)

E [d− p | yi, p] = τ−1
i f−1

i yi +

(
τ−1
i

a1

a2
2

f−1
Z − 1

)
(a1d+ a2z) (164)

V ar [E [d− p | yi, p]] =

(
τ−1
i f−1

i +

(
τ−1
i

a1

a2
2

f−1
Z − 1

)
a1

)2

fD +

(
τ−1
i

a1

a2
2

f−1
Z − 1

)2

a2
2fZ(165)

Now first we must have τ−1
i

a1
a22
f−1
Z − 1 = 0 in order for the third term to be zero. But if that

is true, then for the first term to be zero we must have f−1
i = 0 (since τ−1

i is always positive).

Combining f−1
i = 0 with τ−1

i
a1
a22
f−1
Z − 1 = 0, we obtain

f−1
D = ρf−1

avgf
−1
Z k. (166)

E.2 Corollary 3

We drop the notation j for clarity. Assume that low-frequency agents are initially uninformed

about the frequency; then f−1
i = 0, for all i so:

τi =

(
a1

a2

)2

f−1
Z + f−1

D . (167)

Using expression (152), we then have

ρ−1q̃LF,i =

(
(1− a1)

(
a1

a2

)2

f−1
Z − a1f

−1
D

)
d+

(
a1(1− a1)

a2
f−1
Z − a2f

−1
D

)
z. (168)
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Given that r = (1− a1)d− a2z and that z and d are independent,

ρ−1E−1 [q̃LF,ir] =

(
(1− a1)

(
a1
a2

)2
f−1
Z − a1f

−1
D

)
(1− a1)fD −

(
a1(1−a1)

a2
f−1
Z − a2f

−1
D

)
a2fZ

= (1− a1)2
(
a1
a2

)2
f−1
Z fD − 2a1(1− a1) + a2

2fZf
−1
D

=
(

(1− a1)
(
a1
a2

)
(f−1
Z fD)

1
2 − a2(fZf

−1
D )

1
2

)2

(169)

For any f−1
avg > 0, where a1/a2 = ρf−1

avg, the derivative of this expression with respect to f−1
avg is

ρ−1 dE−1[q̃LF,ir]
df−1
avg

= 2
(

(1− a1)
(
a1
a2

)
(f−1
Z fD)

1
2 − a2(fZf

−1
D )

1
2

)
×
{
ρ
[
(1− a1)(f−1

Z fD)
1
2 − a1(fZf

−1
D )

1
2

]
−
[
(f−1
Z fD)

1
2 + (fZf

−1
D )

1
2

]
ρ ∂a1
∂f−1
avg
f−1
avg

}
(170)

Moreover, when f−1
avg > 0,

∂a1

∂f−1
avg

f−1
avg = a1(1− a1) + (1− a1)

(ρf−1
avg)

2f−1
Z

(ρf−1
avg)2f−1

Z + f−1
avg + f−1

D + ρ−1k
. (171)

The following limits follow from the discussion in Appendix C.2.2:

lim
f−1
avg→0+

a1 = 0, lim
f−1
avg→0

a2 =
1

ρf−1
D + k

. (172)

Using these limits and the expressions just derived, we arrive at

lim
f−1
avg→0+

∂E−1 [q̃LF,ir]

∂f−1
avg

= −2ρ
(fZf

−1
D )

1
2 (f−1

Z fD)
1
2

f−1
D +ρ−1k

< 0. (173)

Re-introducing the notation j, for the frequency at which entry takes place, we then have

d

df−1
avg,j

E−1

[∑
t

Q̃LF,t (Dt − Pt)

]
=

d

df−1
avg,j

∑
k

E−1 [q̃LF,krk] =
d

df−1
avg,j

E−1 [q̃LF,jrj ] < 0; (174)

that is, all the effect of entry on total profits is concentrated on frequency j, where entry reduces

profits, as just established.

For the last result, we again use the frequency separability,

d

df−1
avg,j

E−1 [ULF,0] =
d

df−1
avg,j

E−1 [uLF,0,j ] , (175)

where

E−1[uLF,0,j ] ≡
1

2
T−1

[(
(1− a1,j)

2 fD,j + a2
2,jfZ,j

)
τi,j − 1

]
(176)

is the component of utility which fluctuates at frequency j. This latter definition uses expression
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(128), derived in Appendix C.4. Omitting the j notation for clarity, the derivative of this expression

with respect to favg assuming that f−1
i = 0 is:

2T
dE−1[uLF,0]

df−1
avg

=
(
(1− a1)2fD + a2

1(ρf−1
avg)

2fZ
)

2ρ2f−1
Z f−1

avg

+
(
−2(1− a1) ∂a1

∂f−1
avg
fD + 2a1

∂a1
∂f−1
avg

(
ρf−1
avg

)2
fZ + 2a2

1ρ
2fZf

−1
avg

)((
ρf−1
avg

)2
f−1
Z + f−1

D

)
(177)

Given that:

lim
f−1
avg→0+

a1 = 0, (178)

the only term in this expression for which the limit may not be 0 as f−1
avg → 0+ is:

−2(1− a1)
∂a1

∂f−1
avg

fD + 2a1
∂a1

∂f−1
avg

ρf−1
avgfZ . (179)

However, given equation (171), we have that:

lim
f−1
avg→0+

∂a1

∂f−1
avg

f−1
avg = 0, (180)

and so the second term in (179) goes to 0 as f−1
avg → 0+. For the second term, note that, using

(171) we have that:

∂a1

∂f−1
avg

=
a1

f−1
avg

+ o(1) =
1 + (ρf−1

avg)f
−1
Z

(ρf−1
avg)2f−1

Z + f−1
D + f−1

avg + ρ−1k
+ o(1). (181)

Therefore,

lim
f−1
avg→0+

2T
dE−1[uLF,0]

df−1
avg

= −2
fD

f−1
D + ρ−1k

= −2fDa2 < 0, (182)

which proves the last statement of corollary 3.

F Quadratic costs

F.1 Frequency domain expressions for trading costs

Using Qi = Λqi, each agent’s position at time t can be written as

Qi,t =
∑
j

[
qj cos (2πjt/T )

+qj′ sin (2πjt/T )

]
. (183)

Trading costs are then written in terms of (Qi,t −Qi,t−1)2 as:

QV {Qi} ≡
T∑
t=2

(Qi,t −Qi,t−1)2 + (Qi,1 −Qi,T )2 . (184)
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We can write that as

QV {Qi} = (DQ)′ (DQ) (185)

where D is a matrix that generates first differences,

D ≡



−1 1 0 · · · 0

0 −1 1 0 · · ·
...

...
...

...
...

0 0 · · · −1 1

1 0 · · · 0 −1


. (186)

Using again the fact that Qi = Λqi,

QV {Qi} = q′Λ′D′DΛq (187)

In what follows, we will need to evaluate the matrix Λ′D′DΛ. The m,n element of that matrix is

the inner product of the m and n columns of DΛ. Each column of DΛ contains the first difference

of the corresponding column of Λ, with the exception of the last element, (DΛ)m,T , which is equal

to Λm,t − Λn,T . We have the following standard trigonometric results: for m 6= n:

T∑
t=1

(cos (ωmt)− cos (ωm (t− 1))) (cos (ωnt)− cos (ωn (t− 1))) = 0, (188)

T∑
t=1

(cos (ωmt)− cos (ωm (t− 1))) (sin (ωnt)− sin (ωn (t− 1))) = 0, (189)

T∑
t=1

(sin (ωmt)− sin (ωm (t− 1))) (sin (ωnt)− sin (ωn (t− 1))) = 0, (190)

where recall that ωm = 2πm
T , and:

T∑
t=1

(cos (ωmt)− cos (ωm (t− 1)))2 = 2T sin2 (ωm/2) , (191)

T∑
t=1

(sin (ωmt)− sin (ωm (t− 1)))2 = 2T sin2 (ωm/2) , (192)

T∑
t=1

(cos (ωmt)− cos (ωm (t− 1))) (sin (ωmt)− sin (ωm (t− 1))) = 0. (193)

These results immediately imply that the off-diagonal elements of Λ′D′DΛ are equal to zero and

the jth element of the main diagonal is 2T sin2
(
ωbj/2c/2

)
.
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We then have

QV {Qi} = qΛ′D′DΛq (194)

=
T∑
j=1

2T sin2
(
ωbj/2c/2

)
q2
i,j (195)

Total holding costs can be written as:

T∑
t=1

Q2
t =

T∑
j=1

q2
j , (196)

which is just Parseval’s theorem.

F.2 Equilibrium of the trading cost model

Throughout the analysis, unless it is necessary, we omit the index j of the particular frequency in

order to simplify notation.

F.2.1 Investment and equilibrium

The first-order condition for frequency j is

0 = E [dj − pj | yi,j , pj ]− 2c sin2
(
ωbj/2c/2

)
qj − bqj (197)

q =
E [dj − pj | yi,j , pj ]

γj
(198)

= γ−1
j τ−1

i

(
f−1
i yi +

(
a1

a2
2

f−1
Z − τi

)
p

)
(199)

where

γj ≡ 2c sin2
(
ωbj/2c/2

)
+ b (200)

is the marginal cost of qj . We can then solve for the coefficients a1 and a2 as before.

Inserting the formula for the conditional expectation and integrating across investors yields∫
i
γ−1
j τ−1

i

(
f−1
i yi +

(
a1

a2
2

f−1
Z − τi

)
(a1d− a2z)

)
di = zj (201)∫

i
γ−1
j τ−1

i

(
f−1
i d+

(
a1

a2
2

f−1
Z − τi

)
(a1d− a2z)

)
di = zj (202)
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Matching coefficients then yields ∫
i
γ−1
j τ−1

i

(
a1

a2
2

f−1
Z − τi

)
di = −a−1

2 (203)∫
i
γ−1
j τ−1

i

(
f−1
i +

(
a1

a2
2

f−1
Z − τi

)
a1

)
di = 0 (204)

Combining those two equations, we obtain∫
i
γ−1
j τ−1

i f−1
i di =

a1

a2
(205)

Now put the definition of τi into that equation for f−1
i

∫
i
γ−1
j τ−1

i

(
τi −

a2
1

a2
2

f−1
Z − f

−1
D

)
di =

a1

a2
(206)

γ−1
j

∫
i
1−

(
a2

1

a2
2

f−1
Z − f

−1
D

)
τ−1
i di =

a1

a2
(207)

F.2.2 Expected utility

At any particular frequency,

Ui,j = qi,jE0,i [dj − pj ]−
1

2
q2
i,j2c sin2

(
ωbj/2c/2

)
− 1

2
bq2
i,j (208)

=
1

2

E [dj − pj | yi,j , pj ]2

γj
(209)

Expected utility prior to observing signals is then

EUi,j ≡
1

2
E

[
E [dj − pj | yi,j , pj ]2

γj

]
(210)

E
[
E [dj − pj | yi,j , pj ]2

]
is the variance of the part of the return on portfolio j explained by yi,j

and pj , while τi,j is the residual variance. We know from the law of total variance that

V ar [dj − pj ] = V ar [E [dj − pj | yi,j , pj ]] + E [V ar [dj − pj | yi,j , pj ]] (211)

where the second term on the right-hand side is just τ−1
i,j and the first term is E

[
E [dj − pj | yi,j , pj ]2

]
since everything has zero mean. The unconditional variance of returns is simply

V ar [dj − pj ] = V ar [(1− a1) dj + a2zj ] (212)

= (1− a1,j)
2 fD,j + a2

2fZ,j (213)
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So then

EUi,j =
1

2

V ar [dj − pj ]− τ−1
i,j

γj
(214)

What we end up with is that utility is decreasing in τ−1
i,j . That is,

EUi,j = −1

2

τ−1
i,j

γj
+ constants. (215)

F.2.3 Information choice

With the linear cost on precision, agents maximize

−1

2

τ−1
i,j

γj
− ψf−1

i,j (216)

= −1

2

(
a2

1

a2
2

f−1
Z,j + f−1

i,j + f−1
D,j

)−1

γ−1
j − ψf

−1
i,j (217)

The FOC for f−1
i,j is

ψ =
1

2
τ−2
i,j γ

−1
j (218)

τi,j =
1√
2
ψ−1/2γ

−1/2
j (219)

But τ has a lower bound of
a21
a22
f−1
Z + f−1

D , so it’s possible that this has no solution. That would be

a state where agents do no learning. Formally,

τi,j = max

(
a2

1

a2
2

f−1
Z + f−1

D ,
1√
2
ψ−1/2γ

−1/2
j

)
(220)

Note that, unlike in the other model, the equilibrium is unique here – all agents individually

face a concave problem with an interior solution.

Frequencies with no learning Now using the result for a1/a2 from above, at the frequencies

where nobody learns, f−1
i = 0, we have

a1

a2
=

∫
i
γ−1
j τ−1

i f−1
i di (221)

= 0 (222)

which then implies

τi,j = max

(
f−1
D ,

1√
2
ψ−1/2γ

−1/2
j

)
(223)
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To get a2, we have ∫
i

(
cj2 + b

)
τ−1
i

(
a1

a2
2

f−1
Z − τi

)
di = −a−1

2 (224)

γj = a2 (225)

So the sensitivity of the price to supply shocks is increasing in the cost of holding inventory, b,

and the trading costs, c. It is also higher at higher frequencies – it is harder to temporarily push

through supply than to do it persistently.

Frequencies with learning At the frequencies at which there is learning, where

f−1
D <

1√
2
ψ−1/2γ

−1/2
j (226)

we have, just by rewriting the τ equation,

f−1
i = τi −

a2
1

a2
2

f−1
Z − f

−1
D (227)

Using the second equation from above,∫
i
γ−1
j τ−1

i

(
a1

a2
2

f−1
Z − τi

)
di = −a−1

2 (228)∫
i
γ−1
j τ−1

i

(
a1

a2
f−1
Z − a2τi

)
di = −1 (229)∫

i
γ−1
j

(
τ−1
i

a1

a2
f−1
Z − a2

)
di = −1 (230)

Under the assumption of a symmetric strategy, this is

τ−1a1

a2
f−1
Z − a2 = −γj (231)

a1

a2
= τfZ (−γj + a2) (232)

Using the other equilibrium condition, we have∫
i
γ−1
j τ−1

i

(
τi −

a2
1

a2
2

f−1
Z − f

−1
D

)
di =

a1

a2
(233)∫

i
γ−1
j

(
1− τ−1

i

a1

a2
f−1
Z

a1

a2
− τ−1

i f−1
D

)
di =

a1

a2
(234)

1− (−γj + a2)
a1

a2
− τ−1

i f−1
D =

(
cj2 + b

) a1

a2
(235)

1− τ−1
i f−1

D = a1 (236)
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Plugging in the formula for τi when there is learning,

1−
√

2ψ1/2γ
1/2
j f−1

D = a1. (237)

The expression for a2 can be obtained from:

a1

τfZ
= (−γj + a2) a2. (238)

Since a1/τfZ > 0, we know that there is only one solution to this equation for a2 > 0. The positive

root is

a2 =
γj +

√
γ2
j + 4 a1

τfZ

2
(239)

G Results when fundamentals are difference-stationary

In the main text, we assume that the level of fundamentals is stationary. Here we examine an

extension in which fundamentals are stationary in terms of first differences and show that the

results go through nearly identically, with the primary difference being in how the low-frequency

portfolio is defined.

G.1 Informed investors under difference stationarity

We assume that D0 is known to investors when making decisions, and without loss of generality

normalize D0 = 0. Define ∆ to be the first difference operator so that

∆Dt = Dt −Dt−1 (240)

and define the vector ∆D ≡ [∆D1,∆D2, ...∆DT ]′. We assume that

∆D ∼ N (0,ΣD) . (241)

For any given allocation to the futures contracts, there is an allocation to claims on ∆D that

gives an identical payoff. Specifically, an allocation Q′iD can be exactly replicated by

Q′iD = Q′iL1∆D (242)

=
(
L′1Qi

)′
∆D (243)

52



where L1 is a matrix that creates partial sums,

L1 ≡


1 0 0 · · ·
1 1 0

1 1 1
...

. . .

 (244)

So an allocation of Qi to the futures is equivalent to an allocation of L′1Qi to claims on the first

differences of fundamentals, which we will call the growth rate futures. Define the notation

Q∆,i ≡ L′1Qi (245)

Furthermore, the prices of the growth rate futures are simply the vector ∆P (by the law of one

price). We can therefore rewrite the optimization problem equivalently as

maxT−1
T∑
t=1

βtQ∆,i,tE0,i [∆Dt −∆Pt]−
1

2

(
ρT−1

)
V ar0,i

[
T∑
t=1

βtQ∆,i,t (∆Dt −∆Pt)

]
(246)

Now suppose for the moment that we are able to solve the entire model in terms of first

differences (that is not obvious as we will need to ensure that noise trader demand is also difference

stationary). So we have an allocation Q∆D,i. An allocation to the first differences is then equivalent

to an allocation of (L′1)−1Q∆,i to the levels (which follows trivially from the definition of Q∆,i in

(245)).

Since our maintained assumption is that we will solve the model in first differences in the same

way we did in the main text for levels, that means that we will continue to use the rotation Λ, but

now in first differences. So the frequency domain allocations in terms of first differences will be

Q̃∆D,i = Λq̃∆,i (247)

where Q̃∆D,i,t ≡ Q∆D,i,tβ
t. q̃∆,i now represents the allocations to different frequencies of growth in

fundamentals. The key question, then, is what that implies for the behavior of portfolios in terms

of levels. We have

Q̃i =
(
L′1
)−1

Q̃∆,i (248)

=
(
L′1
)−1

Λq̃∆,i (249)

So in terms of levels, the basis vectors, instead of being Λ, are (L′1)−1 Λ.
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For (L′1)−1 we have

(
L′1
)−1 ≡



1 −1 0 · · · 0

0 1 −1
...

0 0 1
. . . 0

...
. . . −1

0 · · · 0 0 1


(250)

So the way that (L′1)−1 transforms a matrix is to take a forward difference of each column, and

then retaining the value of the final row. A way to see the implications of that transformation is to

approximate the finite differences of the sines and cosines as derivatives. The columns of (L′1)−1 Λ

are equal to (L′1)−1 cj and (L′1)−1 sj , which can be written using standard trigonometric formulas

as:

(
L′1
)−1

cj ≈

 2 sin
(

1
2ωj
)√

2
T

{
sin
(
ωj
(
t− 1

2

))}T
t=2√

2
T cos (ωj(T − 1))

 (251)

(
L′1
)−1

sj ≈

 −2 sin
(

1
2ωj
)√

2
T

{
cos
(
ωj
(
t− 1

2

))}T
t=2√

2
T sin (ωj(T − 1))

 (252)

The column cj represents a portfolio in terms of the first differences of fundamentals with weights

equal to a cosine fluctuating at frequency ωj . (L′1)−1 cj measures the loadings of that portfolio on

claims to the level of fundamentals. These loadings also fluctuate at frequency ωj , with the only

difference being the replacement of the cosine with a sine function. (Intuitive, the loadings are

approximately equal to the derivative of the columns of Λ with respect to time; taking derivatives

does not affect the characteristic frequency of fluctuations.)

So consider a relatively high-frequency investor, whose portfolio weights are all close to zero

except for a large value in the vector q∆,i at some large value of j. By assumption, that investor

holds a portfolio whose loadings on the first differences of fundamentals fluctuate at frequency ωj .

What the approximations in (251–252) show, though, is that that investor’s positions measured in

terms of the level of fundamentals (i.e. Q̃i) has loadings that also fluctuate at frequency ωj .

One subtlety is in the lowest-frequency portfolio, (L′−1
1

(
1√
2
c0

)
. That portfolio puts equal

weight on growth in fundamentals on all dates – it is a bet on the sample mean growth rate. In

terms of levels, note that (L′1)−1
(

1√
2
c0

)
=
[
0, 0, 0, ...,

√
2/T

]
. A person who wants to bet on the

mean growth rate between dates 1 and T can do that by buying a claim to fundamentals only on

date T .19

19The highest frequency portfolio, (L′−1
1

(
1√
2
cT

2

)
, is given by 1/

√
T (2,−2, ..., 2, 1)′, and therefore fluctuates at the

highest sample frequency.
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G.2 Noise traders under difference stationarity

Last, we need to show that noise trader demand will also take a form such that the entire model can

be solved in terms of first differences (and then shifted back into levels for interpretation). First,

as above, since the model expressed in first differences is just a linear transformation of the levels,

the noise traders’ optimization problem can be written in terms of first differences,

maxT−1
T∑
t=1

βtN∆,tE0,N [∆Dt −∆Pt]−
1

2

(
ρT−1

)
V ar0,N

[
T∑
t=1

βtN∆,t (∆Dt −∆Pt)

]
(253)

where N∆,t is the demand of the noise traders for the claims on first differences.

We assume that the noise traders understand that fundamentals have a unit root and that they

therefore have priors and signals that refer to the change in fundamentals. The analogs to (51) and

(52) are then

∆D ∼ N
(

0,Σprior
N∆

)
(254)

S ∼ N
(

∆D,Σsignal
N∆

)
(255)

and the Bayesian update is

∆D | S ∼ N
(

ΣN∆

(
Σsignal
N∆

)−1
S,ΣN∆

)
(256)

where ΣN∆ ≡
((

Σsignal
N∆

)−1
+
(

Σprior
N∆

)−1
)−1

(257)

55



Figure 1: Portfolio weights for the cosing frequency portfolios c1 and c10, as defined in the main
text. The horizontal axis is time, or the maturity of the corresponding futures contract. The
vertical axis is the weight which each portfolio puts on that futures contract.
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