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Abstract

Monotone function intervals are sets of monotone functions that are bounded point-

wise above and below by two monotone functions. We characterize the extreme points

of such intervals and apply this result to various economic subjects. Using the extreme

points, we characterize the distributions of posterior quantiles, leading to an analog

of a classical result on the distributions of posterior means. We apply this analog to

political economy, Bayesian persuasion, and the psychology of judgement. Monotone

function intervals provide a common structure to security design, and we use their

extreme points to unify and generalize seminal results in that literature when either

adverse selection or moral hazard pertains.
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1 Introduction

Monotone functions play a crucial role in many economic settings. In standard equilibrium

analyses, demand curves and supply curves are monotone. In mechanism design, incentive

compatible allocation rules are monotone. In moral hazard problems, many contracts are

monotone. In information economics, distributions of a one-dimensional unknown state can

be summarized by monotone cumulative distribution functions (CDFs). Among all order-

ings, the pointwise dominance order is one of the most natural ways to compare monotone

functions: Outward/inward shifts of supply and demand, resource constraints in allocation

problems, limited liability in contract theory, and the first-order stochastic dominance order

of CDFs are all expressed in terms of pointwise dominance of monotone functions.

In this paper, we provide a systematic way to study an arbitrary set of monotone functions

that are bounded pointwise from above and below by two monotone functions. Without loss,

we focus on sets of nondecreasing, right-continuous functions bounded by two nondecreasing

functions, such as the blue and red curves in Figure I. We refer to these sets as monotone

function intervals and show that many economic problems are connected to such intervals.

Our main result (Theorem 1) characterizes the extreme points of monotone function intervals.

We show that a nondecreasing, right-continuous function is an extreme point of a monotone

function interval if and only if the function either coincides with one of the two bounds or is

constant on an interval in its domain. Wherever the function is constant on an interval, it

must coincide with one of the two bounds at one of the endpoints of the interval, as illustrated

by the black curve in Figure I.
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Figure I
An Extreme Point of a Monotone Function Interval

Since monotone function intervals are convex, characterizing their extreme points is useful
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by virtue of two known properties of extreme points. The first property, formally known as

Choquet’s theorem, is that any element of a compact and convex set can be represented as a

mixture of the extreme points. This allows one to focus only on extreme points when trying

to establish properties that are preserved under mixtures. The second property is that for

any convex optimization problem that admits a solution, one of the solutions must be an

extreme point of the feasible set. Exploiting these two properties, we demonstrate the value

of the extreme point characterization to economics through two classes of applications as

examples.

In the first class of applications, we use Theorem 1 and Choqet’s theorem to character-

ize the distributions of posterior quantiles. Consider a random variable and a signal for it.

Each signal realization induces a posterior belief. For every posterior belief, one can com-

pute the posterior mean. Strassen’s theorem (Strassen 1965) implies that the distribution

of these posterior means is a mean-preserving contraction of the prior. Conversely, every

mean-preserving contraction of the prior is the distribution of posterior means under some

signal. Instead of posterior means, one can derive many other statistics of a posterior. The

characterization of the extreme points of monotone function intervals leads to an analog of

Strassen’s theorem, which characterizes the distributions of posterior quantiles (Theorem 2

and Theorem 3). The set of feasible distributions of posterior quantiles coincide with an

interval of CDFs bounded by a natural upper and lower truncation of the prior.

We apply Theorem 2 and Theorem 3 to three settings: gerrymandering, quantile-based

persuasion, and apparent over/underconfidence (misconfidence). These settings all share

concerns over ordinal rather than cardinal outcomes. First, gerrymandering is connected

to the distributions of posterior quantiles since voters’ political ideologies are only ordinal.

When the distribution of voters’ political ideologies in an election district is interpreted as

a posterior, the median voter theorem implies that the ideological position of the elected

representative in that district is a posterior median. Since an electoral map corresponds to a

distribution of posteriors under this interpretation, Theorem 2 and Theorem 3 characterize

the compositions of the legislative body that a gerrymandered map can create. Second, in

Bayesian persuasion, Theorem 2 and Theorem 3 bring tractability to persuasion problems

where the sender’s indirect payoff is a function of posterior quantiles : an ordinal analog of the

widely studied environment where the sender’s indirect payoff is a function of posteriormeans.

Ordinal outcomes matter if the receiver is not an expected utility maximizer, but a quantile

maximizer (Manski 1988; Rostek 2010), or if the sender’s payoff is state independent and

the receiver chooses an action to minimize the expected absolute—as opposed to quadratic—

distance to the state. Third, the literature on the psychology of judgement documents that

individuals appear to be over or under confident when evaluating themselves relative to a
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population. Theorem 3 implies the seminal result of Benôıt and Dubra (2011), who provide

a necessary and sufficient condition for apparent overconfidence (e.g., more than 50% of

individuals ranking themselves above the population median) to imply true overconfidence

(i.e., individuals are not Bayesian).

In the second class of applications, we use Theorem 1, together with the optimality of

extreme points in convex problems, to study security design with limited liability. Consider

the canonical security design problem where the security issuer designs a security that speci-

fies payments contingent on the realized return of an asset. Two assumptions are commonly

imposed in the security design literature. The first assumption is that any security must be

nondecreasing in the asset’s return.1 The second is limited liability, which places natural

upper and lower bounds on the security’s payoff given each realized return. Under these two

assumptions, the set of securities coincides with a monotone function interval bounded by

the identity function and the constant function 0.

Two seminal papers adopt these assumptions in their analysis of the security design

problem. Innes (1990) studies the problem under moral hazard, whereas DeMarzo and Duffie

(1999) study it under adverse selection. Both papers derive a standard debt contract as an

optimal security, which promises either a constant payment or the asset’s realized return,

whichever is smaller. Many papers in security design that followed were influenced by the

Innes (1990) or DeMarzo and Duffie (1999) environment. (See, for example, Schmidt 1997;

Casamatta 2003 and Eisfeldt 2004; Biais and Mariotti 2005.)

The optimality of standard debt in Innes (1990) and DeMarzo and Duffie (1999) relies on

a crucial assumption: The distribution of the asset return satisfies the monotone likelihood

ratio property (MLRP). Therefore, the structure of optimal securities without MLRP remains

relatively under-explored. Nonetheless, since security design in these settings is a convex

optimization problem, and since the set of securities is a monotone function interval, there

must be an extreme point of the feasible set that is optimal. Using the characterization

in Theorem 1, we show that these extreme points correspond to contingent debt contracts,

where the payment due depends on the realized return of the asset. Part of the nature of

standard debt contracts—which grants the entrepreneur only residual rights and never has

the entrepreneur share equity with investors—is still preserved even without assuming MLRP,

but the face value of the debt may depend on the realized asset return. In essence, this result

separates the effects of limited liability from those of MLRP on the optimal security.

Overall, this paper uncovers the common underlying role of monotone function intervals in

many topics in economics, and it offers a unifying approach to answering canonical economic

1Nondecreasing securities are desirable, as a security holder would not have an incentive to sabotage the
asset if the payment they receive is increasing in the asset’s return.
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questions that have been previously answered by separate, case-specific approaches.

Related Literature. This paper relates to several areas. The main result connects to

characterizations of extreme points of convex sets. Pioneering in this area, Hardy, Littlewood

and Pólya (1929) characterize the extreme points of a set of vectors x majorized by another

vector x0 in Rn, which is often referred to as majorization orbits.2 Ryff (1967) extends this

result to infinite dimensional spaces. Kleiner, Moldovanu and Strack (2021) characterize the

extreme points of a subset of orbits with an additional monotonicity assumption, which is

equivalent to focusing on the set of probability distributions that are either a mean-preserving

spread or mean-preserving contraction of a probability distribution on R.3

The results of Kleiner, Moldovanu and Strack (2021) can be regarded as characterizations

of extreme points of increasing convex functions, defined on a bounded interval and agreeing

on the endpoints, that dominate another increasing convex function or are dominated by

another increasing convex function. In comparison, this paper characterizes the extreme

points of increasing functions that dominate an increasing function and are dominated by

another increasing function. Moreover, the applications of Kleiner, Moldovanu and Strack

(2021) pertain to the dispersion of expected values (i.e., problems related to second -order

stochastic dominance), such as allocation problems with quasi-linear preferences, two-sided

matching, delegation problems, and mean-based persuasion. The applications in this paper

pertain to levels and orderings of variables of interest (i.e., problems related to first-order

stochastic dominance), such as voting, quantile-based persuasion, self-ranking, and monotone

securities with limited liability.

The first application of the extreme point characterization to the distributions of posterior

quantiles is related to belief-based characterizations of signals, which date back to the seminal

contributions of Blackwell (1953) and Harsanyi (1967-68). The characterization of distribu-

tions of posterior means can be derived from Strassen (1965). This paper’s characterization

of posterior quantiles are a complement.

The application to gerrymandering relates to the literature on redistricting, particularly

to Owen and Grofman (1988), Friedman and Holden (2008), Gul and Pesendorfer (2010), and

Kolotilin and Wolitzky (2023), who also adopt the belief-based approach and model a district

map as a way to split the population distribution of voters. Existing work mainly focuses on

a political party’s optimal gerrymandering when maximizing either its expected number of

2A vector x ∈ Rn majorizes y ∈ Rn if
∑k

i=1 x(i) ≥
∑k

i=1 y(i) for all k ∈ {1, . . . , n}, with equality at k = n,
where x(j) and y(j) are the j-th smallest component of x and y, respectively.

3Several recent papers exploit properties of extreme points to derive economic implications. See, for
instance, Bergemann, Brooks and Morris (2015); Lipnowski and Mathevet (2018); and Arieli, Babichenko,
Smorodinsky and Yamashita (2023).
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seats or its probability of winning a majority. In contrast, this paper characterizes the feasible

compositions of a legislative body that a district map can induce. The application to Bayesian

persuasion relates to that large literature (see Kamenica 2019 for a comprehensive survey), in

particular to communication problems where only posterior means are payoff-relevant (e.g.,

Gentzkow and Kamenica 2016; Roesler and Szentes 2017; Dworczak and Martini 2019; Ali,

Haghpanah, Lin and Siegel 2022). This paper complements that literature by providing

a foundation for solving communication problems where only the posterior quantiles are

payoff-relevant.

Finally, the application to security design connects this paper to that large literature.

Allen and Barbalau (2022) provide a recent survey. In this application, we base our economic

environments on Innes (1990), which involves moral hazard, and DeMarzo and Duffie (1999),

which involves adverse selection. This paper generalizes and unifies results in those seminal

works under a common structure.

Outline. The rest of the paper proceeds as follows. Section 2 presents the paper’s central

theorem: the characterization of the extreme points of monotone function intervals (Theo-

rem 1). Section 3 applies Theorem 1 to characterize the distributions of posterior quantiles.

Economic applications related to the quantile characterization (gerrymandering, quantile-

based persuasion, and apparent misconfidence) follow in Section 3.2. Section 4 applies The-

orem 1 to security design with limited liability. Section 5 concludes.

2 Extreme Points of Monotone Function Intervals

2.1 Notation

Let F be the collection of nondecreasing, right-continuous functions on R.4 For any F , F ∈ F
such that F (x) ≤ F (x) for all x ∈ R (F ≤ F henceforth), let

I(F , F ) := {H ∈ F |F (x) ≤ H(x) ≤ F (x), ∀x ∈ R}.

Namely, I(F , F ) is the collection of nondecreasing, right-continuous functions that dominate

F and simultaneously are dominated by F pointwise. We refer to I(F , F ) as the interval

of monotone functions bounded by F and F . For any F ∈ F and for any x ∈ R, let

F (x−) := limy↑x F (y) denote the left-limit of F at x.

4Whenever needed, F is endowed with the topology defined by weak convergence (i.e., {Fn} → F if
limn→∞ Fn(x) = F (x) for all x at which F is continuous), as well as the Borel σ-algebra induced by this
topology.
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2.2 Extreme Points of Monotone Function Intervals

For any F , F ∈ F with F ≤ F , the interval I(F , F ) is a convex set. H is said to be an

extreme point of I(F , F ) if H cannot be written as a convex combination of two distinct

elements of I(F , F ). Theorem 1 characterizes the extreme points of I(F , F ).

Theorem 1 (Extreme Points of I(F , F )). For any F , F ∈ F such that F ≤ F , H is

an extreme point of I(F , F ) if and only if there exists a countable collection of intervals

{[xn, xn)}∞n=1 such that:

1. H(x) ∈ {F (x), F (x)} for all x /∈ ∪∞
n=1[xn, xn).

2. For all n ∈ N, H is constant on [xn, xn) and either H(x−
n ) = F (x−

n ) or H(xn) = F (xn).

Figure IIA depicts an extreme point H of a monotone function interval I(F , F ), where

the blue curve is the upper bound F , and the red curve is the lower bound F . According to

Theorem 1, any extreme point H of I(F , F ) must either coincide with one of the bounds, or

be constant on an interval in its domain, where at least one end of the interval reaches one

of the bounds.

Appendix A.1 contains the proof of Theorem 1. We briefly summarize the argument

here. For the sufficiency part, consider any H that satisfies conditions 1 and 2 of Theorem 1.

Suppose that H can be expressed as a convex combination of two distinct H1 and H2 in

I(F , F ). Then, for any x /∈ ∪∞
n=1[xn, xn), it must be that H1(x) = H2(x) = H(x), since

otherwise at least one of H1(x) and H2(x) would be either above F (x) or below F (x). Thus,

sinceH1 ̸= H2, there exists n ∈ N such thatH1(x) ̸= H2(x) and λH1(x)+(1−λ)H2(x) = H(x)

for all x ∈ [xn, xn), for some λ ∈ (0, 1). Without loss, suppose that H1(x) < H(x) < H2(x)

for all x ∈ [xn, xn). If H(xn) = F (xn), then F (xn) = H(xn) < H2(xn); whereas if H(x−
n ) =

F (x−
n ), then H1(x

−
n ) > H(x−

n ) = F (x−
n ). In either case, one of H1 and H2 must not be an

element of I(F , F ), a contradiction.

For the necessity part, consider any H ′ that does not satisfy conditions 1 and 2 of Theo-

rem 1. In this case, as depicted in Figure IIB, there exists a rectangle that lies between the

graphs of F and F , so that when restricted to this rectangle, the graph of H ′ is not a step

function with only one jump. Then, since extreme points of uniformly bounded, nondecreas-

ing functions are step functions with only one jump (see, for example, Skreta 2006; Börgers

2015), H ′ can be written as a convex combination of two distinct nondecreasing functions

when restricted to this rectangle. Since the rectangle lies in between the graphs of F and

F , this, in turn, implies that H ′ can be written as a convex combination of two distinct

distributions in I(F , F ).
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Figure II
Extreme Points of I(F , F )

Remark 1. Several assumptions in the setup are merely for the ease of exposition and can be

readily relaxed. First, the domain of F ∈ F does not necessarily need to be R. Theorem 1

holds for any monotone function intervals defined on a totally ordered topological space.

Moreover, right-continuity of F ∈ F is also for ease of exposition. It serves as a convention

that dictates how a function behaves whenever the function is discontinuous and is consis-

tent with a natural topology of weak convergence. Theorem 1 holds even when considering

increasing correspondences. Lastly, Theorem 1 can be extended even if the bounds F and F

are nonmonotonic. Indeed, for arbitrary functions F , F and for any nondecreasing function

H, F ≤ H ≤ F if and only if mon+(F ) ≤ H ≤ mon−(F ), where mon+(F ) is the smallest

nondecreasing function above F and mon−(F ) is the largest monotone function below F .

Remainder of the Paper. In the ensuing sections, we demonstrate how the characteri-

zation of extreme points of monotone function intervals can be applied to various economic

settings. These applications rely on two crucial properties of extreme points. The first

property—formally known as Choquet’s theorem—allows one to express any element H of

I(F , F ) as a mixture of its extreme points if I(F , F ) is compact. As a result, if one wishes

to establish some property for every element of I(F , F ), and if this property is preserved

under convex combinations, then it suffices to establish the property for all extreme points

of I(F , F ), which is a much smaller set. Section 3 uses this first property to characterize

the distributions of posterior quantiles. The second property of extreme points is that, for

any convex optimization problem, one of the solutions must be an extreme point of the fea-

sible set. This property is useful for economic applications because it immediately provides
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knowledge about the solutions to the underlying economic problem if that problem is convex

and if the feasible set is related to a monotone function interval. Section 4 uses this second

property to analyze security design.

3 Distributions of Posterior Quantiles

Theorem 1 alongside Choquet’s theorem permits the characterization of the distributions of

posterior quantiles. This characterization is an analog of the celebrated characterization of

the distributions of posterior means that follows from Strassen’s theorem (Strassen 1965).

Knowing the distributions of posterior quantiles is important for settings where only the

ordinal values or relative rankings of the relevant variables are meaningful, rather than the

cardinal values or numeric differences. (e.g., voting, grading or rating schemes, job perfor-

mance rankings, measures of inequality). Moreover, posterior quantiles are also useful for

studying distributions without well-defined moments, which arise in finance and insurance

for instance.

3.1 Characterization of the Distributions of Posterior Quantiles

We begin by stating the characterization of distributions of posterior quantiles. Let F0 ⊆
F be the collection of cumulative distribution functions (CDFs) in F .5 Consider a one-

dimensional variable x ∈ R that is drawn from a prior F . A signal for x is defined as a

probability measure µ ∈ ∆(F0) such that∫
F0

G(x)µ(dG) = F (x), (1)

for all x ∈ R. Let M denote the collection of all signals.6

For any CDF G ∈ F0 and for any τ ∈ (0, 1), denote the set of τ -quantiles of G by

[G−1(τ), G−1(τ+)], where G−1(τ) := inf{x ∈ R|G(x) ≥ τ} is the quantile function of G and

G−1(τ+) := limq↓τ G
−1(q) denotes the right-limit of G−1 at τ .7 Since the τ -quantile for an

arbitrary CDF may not be unique, we further introduce a notation for selecting a quantile.

We say that a transition probability r : F0 × [0, 1] → ∆(R) is a quantile selection rule if, for

all G ∈ F0 and for all τ ∈ (0, 1), r(·|G, τ) assigns probability 1 to a subset of τ -quantiles

5That is, G ∈ F0 if and only if G ∈ F and limx→∞ G(x) = 1 and limx→−∞ G(x) = 0.
6From Blackwell’s theorem (Blackwell 1953), given any µ ∈ M, each F ∈ supp(µ) can be interpreted as

a posterior for x obtained via Bayes’ rule under a prior F0, after observing the realization of a signal that is
correlated with x. The marginal distribution of this signal is summarized by µ.

7Note that F−1 is nondecreasing and left-continuous for all F ∈ F . Moreover, for any τ ∈ (0, 1) and for
any x ∈ R, G−1(τ) ≤ x if and only if G(x) ≥ τ .
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of G. In other words, a quantile selection rule r selects (possibly through randomization) a

τ -quantile for every CDF G and for every τ ∈ (0, 1), whenever it is not unique. Let R be

the collection of all selection rules.

For any τ ∈ (0, 1), for any signal µ ∈ M, and for any selection rule r ∈ R, let Hτ (·|µ, r)
denote the distribution of the τ -quantile induced by µ and r. For any τ ∈ (0, 1), let Hτ

denote the set of distributions of posterior τ -quantiles that can be induced by some signal

µ ∈ M and selection rule r ∈ R.

Using Theorem 1, we provide a complete characterization of the distributions of posterior

quantiles induced by arbitrary signals and selection rules. To this end, define two distributions

F τ
L and F τ

R as follows:

F τ
L(x) := min

{
1

τ
F (x), 1

}
, F τ

R(x) := max

{
F (x)− τ

1− τ
, 0

}
.

Note that F τ
R ≤ F τ

L for all τ ∈ (0, 1). In essence, F τ
L is the left-truncation of F : the conditional

distribution of F in the event that x is smaller than a τ -quantile of F ; whereas F τ
R is the

right-truncation of F : the conditional distribution of F in the event that x is larger than the

same τ -quantile. Theorem 2 below characterizes the distributions of posterior quantiles Hτ .

Theorem 2 (Distributions of Posterior Quantiles). For any τ ∈ (0, 1),

Hτ = I(F τ
R, F

τ
L).

Theorem 2 characterizes the distributions of posterior τ -quantiles by the monotone func-

tion interval I(F τ
R, F

τ
L). Notice that, because F τ

R and F τ
L are CDFs, their pointwise domi-

nance relation means that F τ
R first-order stochastically dominates F τ

L . Figure III illustrates

Theorem 2 for the case when τ = 1/2. The distribution F
1/2
L is colored blue, whereas the

distribution F
1/2
R is colored red. The green dotted curve represents the prior, F . According

to Theorem 2, any distribution H bounded by F
1/2
L and F

1/2
R (for instance, the black curve in

the figure) can be induced by a signal µ ∈ M and a select rule r ∈ R. Conversely, for any

signal and for any selection rule, the induced graph of the distribution of posterior τ -quantiles

must fall in the area bounded by the blue and red curves. For example, under the signal that

reveals all the information, the distribution of posterior 1/2-quantiles coincides with the prior,

whereas under the signal that does not reveal any information, the distribution of posterior

1/2-quantiles coincides with the step function that has a jump (of size 1) at F−1(1/2).

Theorem 2 can be regarded as a natural analog of the well-known characterization of the

distributions of posteriormeans that follows from Strassen (1965). Strassen’s theorem implies

that a CDF H ∈ F0 is a distribution of posterior means if and only if H is a mean-preserving
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Distributions of Posterior Medians

contraction of the prior F . Instead of posterior means, Theorem 2 pertains to posterior

quantiles. According to Theorem 2, H is a distribution of posterior τ -quantiles if and only if

H first-order stochastically dominates the lower-truncated prior F τ
L and is dominated by the

upper-truncated prior F τ
R.

The fact that Hτ ⊆ I(F τ
R, F

τ
L) follows from the martingale property of posterior beliefs.

Proving the other direction (I(F τ
R, F

τ
L) ⊆ Hτ ), however, is more challenging. To prove this,

one would in principle need to construct a signal that generates the desired distribution of

posterior quantiles for every distribution H ∈ I(F τ
R, F

τ
L). Although it might be easier to

construct a signal that induces some specific distribution of posterior quantiles, constructing

a signal for any arbitrary distribution H ∈ I(F τ
R, F

τ
L) does not seem tractable.8 Nonetheless,

Theorem 1 bypasses this challenge and puts focus on distributions that satisfy its conditions

1 and 2. Indeed, since the mapping (µ, r) 7→ Hτ (·|µ, r) is affine, it suffices to construct

signals that induce the extreme points of I(F τ
R, F

τ
L) as posterior quantile distributions. The

proof of Theorem 2 in Appendix A.2 explicitly constructs a signal (and a selection rule) for

each extreme point of I(F τ
R, F

τ
L). To illustrate the intuition, consider an extreme point H of

8For example, the bounds F τ
R and F τ

L can be attained using a modified version of the “matching extreme”
signal introduced by Friedman and Holden (2008). However, matching extreme signals would inevitably assign
positive probability to posteriors whose quantiles are nearby the prior quantile, and hence, matching extremes
cannot induce any distribution H ∈ I(F τ

R, F
τ
L) that assigns probability zero to some interval containing

[F−1(τ), F−1(τ+)].
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Constructing a Signal that Induces H

I(F τ
R, F

τ
L) that takes the following form:

H(x) =


F τ
L(x), if x < x

F τ
L(x), if x ∈ [x, x)

F τ
R(x), if x ≥ x

,

for some x, x such that F τ
L(x) = F τ

R(x
−), as depicted in Figure IVA. To construct a signal

that has H as its distribution of posterior quantiles, separate all the states x /∈ [x, x]. Then,

take α fraction of the states in [x, x] and pool them uniformly with each separated state below

x, while pooling the remaining 1 − α fraction uniformly with the separated states above x.

Since F τ
L(x) = F τ

R(x
−), by choosing α correctly,9 each x < x, after being pooled with states in

[x, x], would become a τ -quantile of the posterior it belongs to, as illustrated in Figure IVB.

Similarly, each x > x would become a τ -quantile of the posterior it belongs to. Together,

by properly selecting the posterior quantiles, the induced distribution of posterior quantiles

under this signal would indeed be H.

Although the characterization of Theorem 2 may seem to rely on selection rules r ∈ R,

the result remains (essentially) the same even when restricted to signals that always induce

a unique posterior τ -quantile, provided that the prior F has full support on an interval.

Theorem 3 below formalizes this statement. To this end, Let H̃τ ⊆ Hτ be the collection

of distributions of posterior τ -quantiles that can be induced by some signal where (almost)

all posteriors have a unique τ -quantile. The characterization of H̃τ relates to a family of

9Specifically, α = 1−τ
τ F (x)/( τ

1−τ (1− F (x−)) + 1−τ
τ F (x)).
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perturbations of the set I(F τ
R, F

τ
L), denoted by {I(F τ,ε

R , F τ,ε
L )}ε>0, where

F τ,ε
L (x) :=

{
1

τ+ε
F (x), if x < F−1(τ)

1, if x ≥ F−1(τ)
; and F τ,ε

R (x) :=

{
0, if x < F−1(τ)

F (x)−(τ−ε)
1−(τ−ε)

, if x ≥ F−1(τ)
,

for all ε ≥ 0 and for all x ∈ R. Note that I(F τ,0
R , F τ,0

L ) = I(F τ
R, F

τ
L), and that {I(F τ,ε

R , F τ,ε
L )}ε>0

is decreasing in ε under the set-inclusion order.10

Theorem 3 (Distributions of Unique Posterior Quantiles). For any τ ∈ (0, 1) and for any

F ∈ F0 that has a full support on an interval,⋃
ε>0

I(F τ,ε
R , F τ,ε

L ) ⊆ H̃τ ⊆ I(F τ
R, F

τ
L).

According to Theorem 3, for any ε > 0 and for any H ∈ I(F τ,ε
R , F τ,ε

L ), there exists a

signal µ such that H is the distribution of unique posterior τ -quantiles. In other words,

the distributions of unique posterior quantiles are given by the “interior” of I(F τ
R, F

τ
L), and

only the “boundaries” of I(FR, FL) (such as F τ
R and F τ

L themselves) are lost by requiring

uniqueness.

As an immediate corollary of Theorem 2 and Theorem 3, an analog of the law of iterated

expectations emerges, which we refer to as the law of iterated quantiles.

Corollary 1 (Law of Iterated Quantiles). Consider any τ, q ∈ (0, 1).

1. For any F ∈ F0 and for any closed interval Q ⊆ R, Q = [H−1(τ), H−1(τ+)] for some

H ∈ Hq if and only if Q ⊆ [(F q
R)

−1(τ), (F q
L)

−1(τ+)].

2. For any continuous F ∈ F0 that has a full support on an interval and for any x̂ ∈ R,

x̂ ∈ [H−1(τ), H−1(τ+)] for some H ∈ H̃q if and only if x̂ ∈ [(F q
R)

−1(τ), (F q
L)

−1(τ)].

The intuition of Corollary 1 is summarized in Figure V. For any q, τ ∈ (0, 1), Figure V

plots the interval I(F q
R, F

q
L), which, according to Theorem 2 (and Theorem 3), equals all pos-

sible distributions of posterior q-quantiles. Therefore, the τ -quantiles of posterior q-quantiles

must coincide with the interval [(F q
L)

−1(τ), (F q
R)

−1(τ+)]. According to Corollary 1, while the

expectation of posterior means under any signal is always the expectation under the prior,

the possible τ -quantiles of posterior q-quantiles are exactly [(F q
L)

−1(τ), (F q
R)

−1(τ+)]. For ex-

ample, the collection of all possible medians of posterior medians is exactly the interquartiles

[F−1(1/4), F−1(3/4+)] of the prior.

10As a convention, let I(F τ,ε
R , F τ,ε

L ) := ∅ when ε ≥ max{τ, 1− τ}.
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Figure V
Law of Iterated Quantiles

3.2 Economic Applications

In what follows, we illustrate economic applications of Theorem 2 and Theorem 3 through

three examples. These examples are connected by their concerns over ordinal rankings, in-

stead of cardinal values, of relevant outcomes. The first application is to gerrymandering;

here, citizens rank candidates’ positions relative to their own ideal positions, and the median

voter theorem determines who is elected. The second application is to Bayesian persua-

sion when payoffs depend only on posterior quantiles. The third application is to apparent

misconfidence, which explains why people rank themselves better or worse than others.

Limits of Gerrymandering

The study of redistricting ranges across many fields: Legal scholars, political scientists, math-

ematicians, computer scientists, and economists have all contributed to this vast literature.11

While existing economic theory on redistricting has primarily focused on optimal redistrict-

ing or fair redistricting mechanisms (e.g., Owen and Grofman 1988; Friedman and Holden

2008; Gul and Pesendorfer 2010; Pegden, Procaccia and Yu 2017; Ely 2019; Friedman and

Holden 2020; Kolotilin and Wolitzky 2023), another fundamental question is the scope of

redistricting’s impact on a legislature. If any electoral map can be drawn, what kinds of

legislatures can be created? In other words, what are the “limits of gerrymandering”?

Theorem 2 and Theorem 3 describe the extent to which unrestrained gerrymandering

can shape the composition of elected representatives. Consider an environment in which

11See, for example, Shotts (2001); Besley and Preston (2007); Coate and Knight (2007); McCarty, Poole
and Rosenthal (2009); Fryer Jr and Holden (2011); McGhee (2014); Stephanopoulos and McGhee (2015);
Alexeev and Mixon (2018).
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a continuum of citizens vote, and each citizen has single-peaked preferences over positions

on political issues. Citizens have different ideal positions x ∈ R, and these positions are

distributed according to some F ∈ F0. In this setting, a signal µ ∈ M can be thought

of as an electoral map, which segments citizens into electoral districts, such that a district

G ∈ supp(µ) is described by the conditional distribution of the ideal positions of citizens who

belong to it. Each district elects a representative, and election results at the district-level

follow the median voter theorem. That is, given any map µ ∈ M, the elected representative

of each district G ∈ supp(µ) must have an ideal position that is a median of G. When

there are multiple medians in a district, the representative’s ideal position is determined by

a selection rule r ∈ R, which is either flexible or stipulated by election laws.12

Given any µ ∈ M and any selection rule r ∈ R, the induced distribution of posterior

medians H1/2(·|µ, r) can be interpreted as a distribution of the ideal positions of the elected

representatives. Meanwhile, the bounds F
1/2
L and F

1/2
R can be interpreted as distributions of

representatives that only reflect one side of voters’ political positions relative to the median

of the population. Specifically, F
1/2
L describes an “all-left” legislature, which only reflects

citizens’ ideal positions that are left of the population median. Likewise, F
1/2
R represents

an “all-right” legislature, which only reflects citizens’ ideal positions that are right of the

population median . As an immediate implication of Theorem 2 and Theorem 3, Proposition 1

below characterizes the set of possible compositions of the legislature across all election maps.

Proposition 1 (Limits of Gerrymandering). For any H ∈ F , the following are equivalent:

1. H ∈ I(F 1/2
R , F

1/2
L ).

2. H is a distribution of the representatives’ ideal positions under some map µ ∈ M and

some selection rule r ∈ R.

Furthermore, for any fixed selection rule r̂ ∈ R, every H ∈ ∪ε>0I(F
1/2,ε
R , F

1/2,ε
L ) is a distribu-

tion of the representatives’ ideal positions under some map µ ∈ M and selection r̂.

While the literature on optimal gerrymandering has provided abundant insights regarding

the maps that maximize a certain party’s seat share or probability of winning the majority

(Friedman and Holden 2008; Kolotilin and Wolitzky 2023), as well as the equilibrium outcome

between two competing parties who draw maps simultaneously (Friedman and Holden 2020;

Gul and Pesendorfer 2010), Proposition 1 characterizes the composition of the legislature that

could be induced by gerrymandering. According to Proposition 1, any composition of the

legislative body ranging from the “all-left” to the “all-right,” and anything in between those

12Recall that any voting method that meets the Condorcet criterion (e.g., majority voting with two office-
seeking candidates) satisfies the median voter property in this setting (Downs 1957; Black 1958).
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two extremes, can be procured by some gerrymandered map. Meanwhile, any composition

that is more extreme than the “all-left” or the “all-right” bodies is not possible, regardless

of how the districts are drawn.13

If we further specify the model for the congress to enact legislation, we may explore

the set of possible legislative outcomes that can be enacted. One natural assumption for the

outcomes, regardless of the details of the legislative model, is that the enacted legislation must

be a median of the representatives (i.e., the median voter property holds at the legislative

level).14 Under this assumption, an immediate implication of Corollary 1 is that the set of

achievable legislative outcomes coincides with the interquartile range of the citizenry’s ideal

positions, as summarized by Corollary 2 below.

Corollary 2 (Limits of Legislative Outcomes). Suppose that the median voter property holds

both at the district level and at the legislative level. Then an outcome x ∈ R can be enacted

as legislation under some map if and only if x ∈ [F−1(1/4), F−1(3/4+)].

According to Corollary 2, while the only Condorcet winners in this setting are the popula-

tion medians, gerrymandering expands the set of possible legislation to the entire interquartile

range of the population’s views. Conversely, Corollary 2 also suggests it is impossible to en-

act any legislative outcome beyond the interquartile range, regardless of how the districts

are drawn. Studying these downstream effects of gerrymandering on enacted legislation is

less common in the political economy literature, which tends to stop at the solution of an

optimal map. Work that has examined possible legislation under gerrymandering typically

focuses on“policy bias,” which is the gap between majority rule (i.e., the ideal point of the

population’s median voter) and the ultimate policy that could come out of the legislature

under some gerrymandered map (Shotts 2002; Buchler 2005; Gilligan and Matsusaka 2006).

Corollary 2 introduces new, sharp bounds on the potential magnitude of policy bias.

Furthermore, as the population becomes more polarized, so that the interquartile range

becomes wider, more extreme legislation can pass. For instance, consider two population

distributions F and F̃ with the same unique median x∗, and suppose that F̃ is more dispersed

than F under the rotation order around the common median. That is, F (x) ≥ F̃ (x) for all

x > x∗ and F (x) ≤ F̃ (x) for all x < x∗. Then it must be that F̃−1(1/4) ≤ F−1(1/4) ≤
F−1(3/4+) ≤ F̃−1(3/4+). By Corollary 2, it then follows that the range of legislation that can

be enacted becomes wider as the population distribution F becomes more dispersed.

13Gomberg, Pancs and Sharma (2023) also study how gerrymandering affects the composition of the
legislature. However, the authors assume that each district elects a mean candidate as opposed to the
median.

14See McCarty, Poole and Rosenthal 2001; Bradbury and Crain 2005; and Krehbiel 2010 for evidence that
the median legislator is decisive. See also Cho and Duggan (2009) for a microfoundation.
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Knowing that the set of possible legislative outcomes far exceeds the Condorcet winners,

a natural follow-up question is: Which legislative outcomes can defeat the Condercet winners

by securing a majority of support among representatives elected under some map? Corollary 3

below characterizes the set of legislative outcomes that are preferred by a fraction α ∈ [1/2, 1]

of the representatives over any population medians under some map. To state this result, we

let x(α) := max{2F−1(α/2)− F−1(1/2), 0} and x(α) := min{2F−1(1− α/2)− F−1(1/2), 1}.

Corollary 3. For any x ∈ [0, 1] and for any α ∈ [1/2, 1], the following are equivalent:

1. x ∈ [x(α), x(α)].

2. There exists a map and a selection rule such that x is preferred to any population

median by at least α share of the representatives.

Proof. Fix any α ∈ [1/2, 1]. We first prove that 1 implies 2. Consider any x ∈ [x(α), x(α)]. If

x ∈ [F−1(1/2), F−1(1/2+)], then 2 must hold, since the map δ{F} and the selection rule that

selects x with probability 1 induces a distribution of representatives that unanimously share

an ideal position of x. Now suppose that x < F−1(1/2). If the distribution of representatives’

ideal positions is F
1/2
L , then the share of representatives whose ideal positions are closer to x

than to F−1(1/2) would be 2F ((F−1(1/2) + x)/2), which, in turn, is at least α, as x ≥ x(α).

By an analogous argument, at least α share of representitives would prefer x over F−1(1/2+).

Therefore, by Proposition 1, 2 is satisfied for all x ∈ [x(α), x(α)].

Conversely, to prove that 2 implies 1, fix any x ∈ [0, 1] and suppose that there exists a

map µ ∈ M and a selection rule r ∈ R such that under H1/2(·|µ, r), the share of represen-

tatives with ideal positions closer to x than to either F−1(1/2) or F−1(1/2+) is at least α. By

Proposition 1, it then follows that

2F

(
F−1(1/2) + x

2

)
≥ H

1/2

(
F−1(1/2) + x

2

∣∣∣∣µ, r) ≥ α

if x ≤ F−1(1/2), and

2F

(
F−1(1/2) + x

2

)
− 1 ≤ H

1/2

(
F−1(1/2) + x

2

∣∣∣∣µ, r) ≤ 1− α

if x ≥ F−1(1/2+), which, in turn, implies x(α) ≤ x ≤ x(α), as desired. ■

According to Corollary 3, even though the population medians are Condorcet winners,

for any legislative outcome x in [x(α), x(α)], there exists a gerrymandered map that would

secure x with α-absolute majority of support among representatives. A special case for this

result is when F has a symmetric and quasi-convex density. In this case, x(1/2) = 0 and
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x(1/2) = 1. That is, under a polarized population distribution (even only slightly), any

outcome in [0, 1] can defeat the population medians by simple majority rule under some

map, which is arguably a complete reversal of the population medians’ Condorcet property.

In addition, note that x is decreasing in α and x is increasing in α. Also, x(1) = F−1(1/2+)

and x(1) = F−1(1/2). This suggests that raising the voting threshold for an alternative to

beat the population median, such as requiring an absolute majority or unanimous support,

can mitigate the impact of gerrymandering in this regard.

Remark 2 (Districts on a Geographic Map). In practice, election districts are drawn on a

geographic map. Drawing districts in this manner can be regarded as partitioning a two-

dimensional space that is spanned by latitude and longitude. More specifically, let a convex

and compact set Θ ⊆ [0, 1]2 denote a geographic map. Suppose that every citizen who

resides at the same location θ ∈ Θ shares the same ideal position x(θ), where x : Θ → R is

a measurable function. Furthermore, suppose that citizens are distributed on Θ according

to a density function ϕ > 0. Under this setting, Theorem 1 of Yang (2020) ensures that for

any µ ∈ M with a countable support, there exists a countable partition of Θ, such that the

distributions of citizens’ ideal positions within each element coincide with the distributions

in the support of µ. If we further assume that x is non-degenerate, in the sense that each of

its indifference curves {θ ∈ Θ|x(θ) = x}x∈R is isomorphic to the unit interval, then Theorem

2 of Yang (2020) ensures that for any µ ∈ M, there exists a partition on Θ that generates

the same distributions in each district. Therefore, the splitting of the distribution of citizens’

ideal positions has an exact analogue to the splitting of geographic areas on a physical map.

Not only can Proposition 1 characterize the set of feasible maps based on the citizenry’s

distribution of ideal positions, but it can also help identify that distribution itself. A com-

mon existing approach to do so is to map public opinion survey responses to an ideological

spectrum. But a disadvantage of this approach is the absence of consistent questions asked

over time to create a stable mapping and the lack of representativeness in some surveys (Lax

and Phillips 2009). Identifying the ideal positions of elected officials has been more successful

because of the abundance of roll-call voting records available in the estimation (Poole and

Rosenthal 1985; Shor and McCarty 2011). Nonetheless, inferring the citizenry’s distribution

of ideal positions from that of elected officials is difficult, as the distribution of ideal positions

of elected officials might be very different from that of the citizenry due to gerrymandering.

Using Proposition 1, one can identify the possible distributions of citizens’ ideal posi-

tions from the observed distribution of representatives’ ideal positions. Suppose that H is

the observed distribution of representatives’ ideal positions. Proposition 1 implies that the

population distribution F must have H be dominated by F
1/2
R and dominate F

1/2
L at the same

time. This leads to Corollary 4 below.
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Corollary 4 (Identification Set of F ). Suppose that H ∈ F0 is the distribution of ideal

positions of a legislature. Then the distribution of citizens’ ideal positions F must satisfy

1

2
H(x) ≤ F (x) ≤ 1 +H(x)

2
, (2)

for all x ∈ R. Conversely, for any F ∈ F0 satisfying (2), there exists a map µ ∈ M and a

selection rule r ∈ R, such that H is the distribution of ideal positions of the legislature.

According to Corollary 4, the distribution of citizens’ ideal positions can be identified by

(2), even when only the distribution of the representatives’ ideal positions can be observed.15

Quantile-Based Persuasion

Naturally, Theorem 2 and Theorem 3 can also be applied to a Bayesian persuasion setting

where the receiver’s payoff depends only on posterior quantiles. Consider the Bayesian per-

suasion problem formulated by Kamenica and Gentzkow (2011): A state x ∈ R is distributed

according to a common prior F . A sender chooses a signal µ ∈ M to inform a receiver, who

then picks an action a ∈ A after seeing the signal’s realization. The ex-post payoffs of the

sender and receiver are uS(x, a) and uR(x, a), respectively. Kamenica and Gentzkow (2011)

show that the sender’s optimal signal and the value of persuasion can be characterized by the

concave closure of the function v̂ : F0 → R, where v̂(G) := EF [uS(x, a
∗(G))] is the reduced-

form value function of the sender, and a∗(G) ∈ A is the optimal action of the receiver under

posterior G ∈ F0.
16

When |supp(F )| > 2, this “concavafication” method requires finding the concave closure

of a multi-variate function, which is known to be computationally challenging, especially

when |supp(F )| = ∞. For tractability, many papers have restricted attention to preferences

where the only payoff-relevant statistic of a posterior is its mean (i.e., v̂(G) is measurable

with respect to EG[x]). See, for example, Gentzkow and Kamenica (2016); Kolotilin, Li,

Mylovanov and Zapechelnyuk (2017); Dworczak and Martini (2019); Kolotilin, Mylovanov

and Zapechelnyuk (2022b); and Arieli, Babichenko, Smorodinsky and Yamashita (2023).

A natural analog of this “mean-based” setting is for the payoffs to depend only on the

posterior quantiles. Just as mean-based persuasion problems are tractable because distri-

butions of posterior means are mean-preserving contractions of the prior, Theorem 2 and

Theorem 3 provide a tractable formulation of any “quantile-based” persuasion problem, as

described in Proposition 2 below.

15In Yang and Zentefis (2022), we apply the same logic and use Theorem 2 and Theorem 3 to characterize
the identification set of a nonparametric quantile regression function.

16When there are multiple optimal actions, subgame-prefection would always select the one that the sender
prefers most.
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Proposition 2 (Quantile-Based Persuasion). Suppose that the prior F has full support on

some interval, and suppose that there exists τ ∈ (0, 1), a selection rule r ∈ R, and a measur-

able function vS : R → R such that v̂(G) =
∫

R vS(x)r(dx|G, τ), for all G ∈ F0. Then

cav(v̂)[F ] = sup
H∈I(F τ

R,F τ
L)

∫
R
vS(x)H(dx). (3)

Proof. Let v̄(G) := supx∈[G−1(τ),G−1(τ+)] vS(x) for all G ∈ F0. Then, by Theorem 2,

cav(v̂)[F ] ≤ cav(v̄)[F ] = sup
H∈I(F τ

R,F τ
L)

∫
R
vS(x)H(dx).

Meanwhile, by Theorem 3,

sup
H∈∪ε>0I(F τ,ε

R ,F τ,ε
L )

∫
R
vS(x)H(dx) ≤ cav(v̂)[F ].

Together, since cl({I(F τ,ε
R , F τ,ε

L )}) = I(F τ
R, F

τ
L), (3) then follows. ■

By Proposition 2, any τ -quantile-based persuasion problem can be solved by simply choos-

ing a distribution in I(F τ
R, F

τ
L) to maximize the expected value of vS(x), rather than con-

cavafying the infinite-dimensional functional v̂. Furthermore, since the objective function of

(3) is affine, Theorem 1 further reduces the search for the solution to only distributions that

satisfy its conditions 1 and 2.17

Proposition 2 can be used to analyze a persuasion problem where the receiver is not an

expected utility maximizer but makes decisions according to ordinal models of utility (i.e.,

quantile maximizers), a class of preferences studied in Manski (1988), Chambers (2007), Ros-

tek (2010), and de Castro and Galvao (2021). When selecting among lotteries, a τ -quantile-

maximizer chooses the one that gives the highest τ -quantile of the utility distribution. For

a quantile-maximizer, the parameter τ provides a complete ranking of risk attitudes, from

extreme downside risk aversion (τ = 0) to extreme downside risk tolerance (τ = 1).18

In addition, Proposition 2 provides further insights to the robustness of optimal signals

in a class of canonical persuasion problems. Consider a setting where the receiver chooses

17A recent elegant contribution by Kolotilin, Corrao and Wolitzky (2022a) provides a tractable method
that simplifies persuasion problems in certain environments. One of these environments is when the receiver’s
payoff is supermodular and the sender’s payoff is state-independent and increasing in the receiver’s action.
One of their examples in this environment is for the receiver’s optimal action for each posterior to be quantile-
measurable. When one further assumes that the sender’s payoff is increasing, the conditions of Proposition 2
lead to the same example. Since we allow for arbitrary (state-independent) sender payoffs, Proposition 2
generalizes this example in an orthogonal direction and complements their method.

18In Yang and Zentefis (2022), we apply Proposition 2 to a setting where a monopolist can choose to
disclose product information to a quantile-maximizing buyer, and we characterize the optimal signal.
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an action to match the state.19 A standard assumption in the literature is that the sender

has a state-independent payoff (i.e., uS(x, a) = vS(a)), and receiver seeks to minimize a

quadratic loss function (i.e., uR(x, a) := −(x − a)2). Under this assumption, the receiver’s

optimal action a∗(G), given a posterior G, equals the posterior expected value EG[x], and

hence, the sender’s problem is mean-measurable. Parameterizing the receiver’s loss function

in this way makes the sender’s persuasion problem tractable since the distributions of the

receiver’s actions are equivalent to mean-preserving contractions of the prior.20 However, it

remains unclear how the parametrization of the receiver’s loss function affects the structure

of the optimal signal. After all, the shape of the loss function imposes a specific cardinal

structure on the receiver’s preferences. With Proposition 2, one may now examine the sender’s

problem when the receiver has a different loss function. When the receiver has an absolute

loss function (i.e., uR(x, a) = −|x − a|), the optimal action under any posterior must be

a posterior median. More generally, when the receiver has a “pinball” loss function (i,e,

uR(x, a) = −ρτ (x − a), with ρτ (y) := y(τ − 1{y < 0})), the optimal action under any

posterior must be a posterior τ -quantile. Since the sender’s payoff is state-independent,

Proposition 2 applies, and the sender’s problem can be rewritten via (3).21 The pinball loss

function imposes a different cardinality structure on the receiver’s payoff, where the marginal

loss remains constant instead of linear as the action moves further away from the state.

With Proposition 2 and (3), one can solve the sender’s problem when the receiver has a

pinball loss function for some specific sender payoffs. Specifically, for any continuous prior F

that has full support on some interval and for any a ∈ R, let

HL
a (x) :=

{
0, if x < a

F τ
L(x), if x ≥ a

; and HR
a (x) :=

{
F τ
R(x), if x < a

1, if x ≥ a
,

for all x ∈ R. Also, for any a, a ∈ R such that F τ
L(a) = F τ

R(a) =: η, let

HC
a,a(x) :=


F τ
L(x), if x < a

η, if x ∈ [a, a)

F τ
R(x), if x ≥ a

.

19To fix ideas, we can let the sender be a financial advisor and the receiver be a client. The financial
advisor wishes to persuade the client to allocate a fraction a ∈ [0, 1] of wealth in stocks and the remaining
1− a fraction in bonds. The client would prefer different portfolio allocations under different states x ∈ [0, 1]
of the economy.

20See Dworczak and Martini (2019) for a characterization of the solutions and an interpretation of the
Lagrange multipliers.

21When applying Proposition 2 to this problem, one may take the selection rule r to be the one that always
selects the sender-preferred τ -quantile
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Corollary 5 summarizes the sender’s optimal signal under various sender payoffs vS.

Corollary 5. Suppose that F is continuous and has full support on a compact interval.

Suppose that vS : R → R is upper-semicontinuous. Then

(i) If vS is quasi-concave and attains its maximum at a ≤ F−1(τ), then HL
a solves (3).

(ii) If vS is quasi-concave and attains its maximum at a > F−1(τ), then HR
a solves (3).

(iii) If vS is strictly quasi-convex, then HC
a,a solves (3) for some a, a such that F τ

L(a) = F
τ
(a).

(iv) F is never the unique solution of (3).

Proof. (i) and (ii) follows immediately from the fact that any H ∈ I(F τ
R, F

τ
L) is dominated

by F τ
R and dominates F τ

L , and that vS(x) is increasing at x for all x ≤ a and is decreasing in

x for all x > a.

For (iii), suppose that for any a ≤ a, HC
a,a is not optimal. Then, since at least one

extreme point of I(F τ
R, F

τ
L) must be the solution of (3), consider any such extreme point and

denote it by H. By Theorem 1, there exists a countable collection of intervals {[xn, xn)}∞n=1

such that conditions 1 and 2 of Theorem 1 hold. Since HC
a,a is not optimal for any a ≤ a,

H ̸= HC
a,a for all a ≤ a. In particular, there must exist n ∈ N such that xn < xn and

either H(xn
−) > F τ

R(xn) or H(xn) < F τ
L(xn). Let a be the minimizer of vS and suppose

that a ≤ F−1(τ). Suppose that H(x−
n ) > F τ

R(xn); then it must be that H(xn) = F τ
L(xn).

Moreover, since H(x−
n ) > F τ

R(xn), then H(xn) > F τ
R(xn) as well. If xn ≤ a, then by replacing

H(x) with min{F τ
L(x), H(xn)} for all x ∈ [xn, xn) and otherwise leaving H unchanged, the

resulting distribution Ĥ must still be in I(F τ
R, F

τ
L). Since vS is strictly decreasing on [xn, xn),

Ĥ must give a higher value, a contradiction. If, on the other hand, xn > a, then since

H(xn) > F τ
R(xn) and since F is continuous, there exists y > xn such that H(x−

n ) > F τ
R(y).

Moreover, since H satisfies conditions 1 and 2, H(x) > H(x−
n ) for all x ∈ [xn, y). Therefore,

by replacing H(x) with H(x−
n ) for all x ∈ [x, y) and leaving H unchanged otherwise, the

resulting Ĥ must still be in I(F τ
R, F

τ
L). Since vS is strictly increasing on [xn, y), Ĥ must

give a higher value, a contradiction. Analogous arguments also lead to a contradiction if

H(xn) < F τ
L(xn). Therefore, H

C
a.a must be optimal for some a ≤ a.

For (iv), note that F is not an extreme point of I(F τ
R, F

τ
L) according to Theorem 1.

Therefore, it is never the unique solution of (3). ■

The distribution HL
a (HR

a ) can be induced by separating all states below (above) F−1(τ)

and pooling all states above (below) F−1(τ) with each of these separated states, and then

pooling all the posteriors with states below (above) a together. This signal is optimal for the

sender if the sender’s payoff is quasi-concave and is maximized at a ≤ F−1(τ) (a > F−1(τ)).

In particular, for any strictly concave vS that is maximized at some a ∈ R, it is optimal for the

sender to reveal no information at all if the receiver’s loss function is a quadratic value, but
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not optimal if the receiver’s loss function is an absolute value. Moreover, the nature of the

receiver’s loss function affects the optimal signal when monotone transformations are applied

to vS. Since any monotone transformation of vS remains quasi-concave and a remains its

maximizer, the sender’s optimal signal remains unchanged when the receiver’s loss function

is an absolute value; however, the optimal signal can be very different if the receiver has

quadratic loss since the curvature of vS may be different.22

Likewise, the distribution HC
a,a can be induced by separating all states above a and below

a, while pooling all the states in [a, a] with each of these separated states. In particular,

for any strictly convex vS, it is optimal for the sender to reveal all the information if the

receiver’s loss function is quadratic, but not optimal if the receiver’s loss function is absolute.

In fact, since F is the distribution of posterior τ -quantiles under the fully revealing signal, it

is never the unique optimal signal if the receiver’s loss function is absolute.23

Apparent Misconfidence

Another application of the characterization of distributions of posterior quantiles relates to

the literature on over/underconfidence (i.e., misconfidence) in the psychology of judgment.

The experimental literature has consistently found that, when individuals are asked to predict

their own abilities, a prediction dataset can be very different from the population distribution.

One common explanation is that individuals are overconfident or underconfident (Alicke,

Klotz, Breitenbecher, Yurak and Vredenburg 1995; De Bondt and Thaler 1995; Camerer

1997). In contrast, Benôıt and Dubra (2011) proposed an alternative explanation: This

difference can be caused by noise in each individual’s signal. Individuals can still be fully

Bayesian even if the prediction dataset is different from the population distribution. That

is, individuals can be apparently misconfident due to dispersion of posterior beliefs. Here, we

show how Benôıt and Dubra (2011)’s insight follows immediately from Theorem 3.

Consider the following setting due to Benôıt and Dubra (2011). There is a unit mass

of individuals, and each one of them is attached to a “type” x ∈ [0, 1], which is distributed

according to a CDF F ∈ F0. Common interpretations of x in the literature include skill

levels, scores on a standardized test, the probability of being successful at a task, or simply

an individual’s ranking in the population in percentage terms. Individuals are asked to

22As an example of a quasi-concave but not concave sender payoff, consider the case of the financial advisor
and the client. The advisor’s commission might be tied to cross-selling some of the firm’s newer mutual funds
over others. If one of those newer funds is a blended portfolio of stocks and bonds, the advisor’s payoff might
be quasi-concave, but not necessarily concave, in the client’s chosen portfolio weight, with a peak at some
a ∈ (0, 1) that has the client put some wealth in stocks and the remainder in bonds.

23As seen in the literature, optimal gerrymandering problems can be studied via a belief-based approach
(e.g., Friedman and Holden 2008; Gul and Pesendorfer 2010; Kolotilin and Wolitzky 2023). As a result,
quantile-based persuasion problems are also connected to gerrymandering when finding optimal or equilibrium
election maps with only aggregate uncertainty.
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predict their own type x. Given a finite partition 0 = z0 < z1 < . . . < zK = 1 of [0, 1], a

prediction dataset is a vector (θk)
K
k=1 ∈ [0, 1]K with

∑K
k=1 θk = 1, where θk denotes the share

of individuals who predict their own type is in [zk−1, zk).

A prediction dataset (θk)k∈K is said to bemedian rationalizable (τ -quantile rationalizable),

if there exists a signal for types x such that the induced posterior has a unique median (τ -

quantile) with probability 1, and that for all k ∈ {1, . . . , K}, the probability of the posterior

median (τ -quantile) being in the interval [zk−1, zk) is θk.
24 In other words, a prediction dataset

(θk)
K
k=1 is median (τ -quantile) rationalizable if there exists a Bayesian framework under which

the share of individuals who predict [zk−1, zk) equals θk when individuals are asked to predict

their types based on the median (τ -quantiles) of their beliefs.25 Theorem 1 (Theorem 4) of

Benôıt and Dubra (2011) characterizes the median (τ -quantile) rationalizable datasets. As

we show below, this characterization can be derived immediately from Theorem 3.

Corollary 6 (Rationalizable Apparent Misconfidence). For any τ ∈ (0, 1), for any F ∈ F0

with full support on [0, 1], and for any partition 0 = z0 < z1 < . . . < zK = 1 of [0, 1], a

prediction dataset (θk)
K
k=1 is τ -quantile rationalizable if and only if for all k ∈ {1, . . . , K},

k∑
i=1

θi <
1

τ
F (zk) (4)

and
K∑
i=k

θi <
1− F (z−k−1)

1− τ
(5)

Proof. For necessity, consider any H ∈ H̃τ such that H(z−k ) − H(z−k−1) = θk for all k ∈
{1, . . . , K}. Then for any k ∈ {1, . . . , K},

∑k
i=1 θi = H(z−k ). Since H ∈ H̃τ , there exists

a signal µ ∈ M for which µ-almost all posteriors have a unique τ -quantile and H(z−k ) =

µ(G ∈ F0|G−1(τ) < zk) = µ(G ∈ F0|τ < G(zk)). Since µ ∈ M, G(zk) is a mean-preserving

spread of F (zk) when G ∼ µ. Thus, µ(G ∈ F0|τ < G(zk)) < F (zk)/τ , and hence (4) holds.

Analogous arguments can be applied to show that (5) holds as well.

For sufficiency, consider any prediction dataset (θk)
K
k=1 such that (4) and (5) hold. Let H

be the distribution that assigns probability θk at (zk+ zk−1)/2. Then, there exists ε > 0 such

24Namely, (θk)
K
k=1 is τ -quantile rationalizable if there exists H ∈ H̃τ such that H(z−k ) − H(z−k−1) = θk.

Technically speaking, Benôıt and Dubra (2011) use a less stringent requirement regarding multiple quantiles.
However, as shown below, Theorem 3 generalizes their conclusion even with this stringent requirement.

25Among experiments with clear instructions on how to make a prediction, the most common ones ask
individuals to make predictions based on their posterior means or medians. When subjects use the posterior
mean to predict their types, the set of rationalizable data would be given by mean-preserving contractions
of the prior, which follows immediately from Strassen’s theorem, as noted by Benôıt and Dubra (2011).
Therefore, the interesting characterization of rationalizable datasets would be when the individuals use other
statistics to predict, such as posterior medians or quantiles.
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that H ∈ I(F τ,ε
R , F τ,ε

L ). By Theorem 3, there exists a signal µ with µ({G ∈ F0|G−1(τ) <

G−1(τ+)}) = 0 such that H(x) = Hτ (x|µ) for all x ∈ R, which in turn implies that µ

τ -quantile-rationalizes (θk)
K
k=1, as desired. ■

Remark 3. Benôıt and Dubra (2011) further assume that F (zk) = k/K for all k (i.e., individu-

als are asked to place themselves into one of the equally populated K-ciles of the population).

Corollary 6 specializes to Theorem 4 of Benôıt and Dubra (2011), whose proof relies on pro-

jection and perturbation arguments and is not constructive. In addition to having a more

straightforward proof and yielding a more general result, another benefit of Theorem 3 is

that the signals rationalizing a feasible prediction dataset are semi-constructive: The ex-

treme points of I(F τ,ε
R , F τ,ε

L ) are attained by explicitly constructed signals, as shown in the

proof of Theorem 3.26

4 Security Design with Limited Liability

In this second class of applications, we show how monotone function intervals pertain to

security design with limited liability. Security design searches for optimal ways to divide

the cash flows of assets across financial claims as a way to mitigate informational frictions.

Monotone function intervals embed two widely adopted economic assumptions in the security

design literature. The first is limited liability, which places natural upper and lower bounds

on the security’s payoff—namely, the asset’s cash flow and zero, respectively. The second is

that the security’s payoff is monotone in the asset’s cash flow. These two assumptions imply

that all feasible securities can be described by monotone function intervals. Recognizing this,

we use the second crucial property of extreme points—namely, for any convex optimization

problem, one of the solutions must be an extreme point of the feasible set—to generalize and

unify several results in security design under a common framework. To do so, we revisit the

environments of two seminal papers in the literature: Innes (1990), which has moral hazard,

and DeMarzo and Duffie (1999), which has adverse selection.

4.1 Security Design with Moral Hazard

Consider the following setting of security design in the presence of moral hazard, a setting due

to Innes (1990). A risk-neutral entrepreneur issues a security to an investor to fund an asset.

The asset needs an investment I > 0. If the asset is funded, the entrepreneur then exerts

26It is also noteworthy that, although Theorem 4 of Benôıt and Dubra (2011) can be used to prove Theo-
rem 2 indirectly when F admits a density (by taking K → ∞ and establishing proper continuity properties),
the same argument cannot be used to prove Theorem 3, which is crucial for the proof of Corollary 6. This is
because of the failure of upper-hemicontinuity when signals that induce multiple quantiles are excluded.
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costly effort to develop the asset. If the effort level is e ≥ 0, the asset’s return is distributed

according to Φ(·|e) ∈ F0, and the (additively separable) effort cost to the entrepreneur is

C(e) ≥ 0.

A security specifies the payoff to the investor for every realized return x ≥ 0 of the asset.

Both the entrepreneur and the investor have limited liability, and therefore, any security

must be a (measurable) function H : R+ → R such that 0 ≤ H(x) ≤ x for all x ≥ 0.

Moreover, a security is required to be monotone in the asset’s return.27 Given a security H,

the entrepreneur chooses an effort level to solve

sup
e≥0

∫ ∞

0

(x−H(x))Φ(dx|e)− C(e). (6)

For simplicity, we make the following technical assumptions: 1) The supports of the asset’s

return distributions {Φ(·|e)}e≥0 are all contained in a compact interval, which is normalized

to [0, 1]. 2) Φ(·|e) admits a density ϕ(·|e) for all e ≥ 0. 3) ϕ(x|e) > 0, and is differentiable

with respect to e for all x ∈ [0, 1] and for all e ≥ 0, with its derivative denoted by ϕe(x|e).
4) {Φ(·|e)}e≥0 and C are such that (6) admits a solution and every solution to (6) can be

characterized by the first-order condition.28

The entrepreneur’s goal is to design a security to acquire funding from the investor while

maximizing the entrepreneur’s expected payoff. Specifically, let F (x) := x and let F (x) := 0

for all x ∈ [0, 1]. The set of securities can be written as I(F , F ). The entrepreneur solves

sup
H∈I(F ,F ), e≥0

[∫ 1

0

[x−H(x)]ϕ(x|e) dx− C(e)

]
s.t.

∫ 1

0

[x−H(x)]ϕe(x|e) dx = C ′(e) (7)∫ 1

0

H(x)ϕ(x|e) dx ≥ (1 + r)I,

where r > 0 is the rate of return on a risk-free asset.

Innes (1990) characterizes the optimal security in this setting using an additional crucial

assumption: The asset’s return distributions {ϕ(·|e)}e≥0 satisfy the monotone likelihood ratio

property (Milgrom 1981). Under this assumption, he shows that every optimal security must

27Requiring securities to be monotone is a standard assumption in the security design literature (Innes
1990; Nachman and Noe 1994; DeMarzo and Duffie 1999). Monotonicity can be justified without loss of
generality if the entrepreneur could contribute additional funds to the asset so that only monotone returns
would be observed.

28For example, we may assume that C is strictly increasing and strictly convex and that ∂2

∂e2ϕ(x|e) ≤ 0 for
all x and for all e.
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A contingent Debt Contract

be a standard debt contract Hd(x) := min{x, d} for some d > 0. While the simplicity

of a standard debt contract is a desirable feature, the monotone likelihood ratio property

is arguably a strong condition (Hart 1995), where higher effort leads to higher probability

weights on all higher asset returns at any return level. It remains unclear what the optimal

security might be under a more general class of distributions.

Using Theorem 1, we can generalize Innes (1990) and solve the entrepreneur’s problem

(7) without the monotone likelihood ratio property. As we show in Proposition 3 below, con-

tingent debt contracts are now optimal. We say that a security H ∈ I(F , F ) is a contingent

debt contract, if there exists an interval partition {In} of [0, 1] and a sequence {dn} ⊆ (0, 1]

such that H(x) = Hdn(x) for all x ∈ In. Figure VI illustrates a contingent debt contract Ĥ

with I1 = [0, 1/2), I2 = [1/2, 1], d1 = 1/4, and d2 = 3/4. Under Ĥ, if the asset’s return x is

below 1/2, the entrepreneur owes debt with face value 1/4; instead, if the return is above 1/2,

the entrepreneur owes debt with a higher face value 3/4. The entrepreneur’s required debt

payment to the investor is contingent on the entrepreneur’s capacity to pay, which itself is

linked to the realized return of the asset.

Clearly, every standard debt contract with face value d is a contingent debt contract where

I1 = [0, 1] and d1 = d. Moreover, a contingent debt contract never involves the entrepreneur

and investor sharing in the equity of the asset. To see how the asset return is split between

parties, suppose the asset earned x ∈ (1/2, 3/4). The entrepreneur would default on the high

face-value debt contract (d2 = 3/4), and the investor would take claim of all the asset’s return

x. If, instead, the asset earned x ∈ (1/4, 1/2), the investor would receive the low face-value

amount (d1 = 1/4), and the entrepreneur would retain the amount x− 1/4. In general, under
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any contingent debt contract, either the entrepreneur defaults and the investor absorbs all

rights to the asset’s worth, or the entrepreneur pays a certain face value and retains the

residual return.

Contingent debt contracts are similar in spirit to many fixed-income securities observed

in practice. The first are state-contingent debt instruments (SCDIs) from the sovereign debt

literature, which link a country’s principal or interest payments to its nominal GDP (Lessard

and Williamson 1987; Shiller 1994; Borensztein and Mauro 2004). The second are versions of

contingent convertible bonds (CoCos) issued by corporations, which write down the bond’s

face value after a triggering event like financial distress (Albul, Jaffee and Tchistyi 2015; Oster

2020). The third are commodity-linked bonds common to mineral companies and resource-

rich developing countries, which tie the amount paid at maturity to the market value of a

reference commodity like silver (Lessard 1977; Schwartz 1982).

Using Theorem 1, we show that a contingent debt contract is optimal:

Proposition 3. There is a contingent debt contract that solves the entrepreneur’s problem

(7).

According to Proposition 3, it is sufficient for the entrepreneur to use a contingent debt

contract, without sharing the equity of the asset with the investor. The nature of standard

debt contracts, which allocates any additional dollar of the asset’s return either fully to the

entrepreneur or to the investor, is preserved even without the monotone likelihood ratio

assumption, except that the entrepreneur may be liable for more when the asset earns more.

The proof of Proposition 3 can be found in Appendix A.5. In essence, since the en-

trepreneur’s objective in (7) is affine, and since the set of feasible contracts is convex, there

must exist an extreme point of the feasible set that solves (7). Thus, it suffices to show that

any extreme point of the feasible set must correspond to a contingent debt contract. To

this end, first note that, by Proposition 2.1 of Winkler (1988), any extreme point H∗ of the

feasible set of (7) can be written as convex combinations of at most three extreme points

of I(F , F ). Then, by Theorem 1, whenever H∗(x0) < x0 for some x0 ∈ (0, 1), there must

be an interval [x0, x0) containing x0 such that H∗(x) < x for all x ∈ [x0, x0). Moreover, H∗

must be constant on any such an interval, since otherwise H∗ must be strictly increasing and

affine, and a similar argument as in the proof of Theorem 1 can then be applied to show that

H∗ can be written as a convex combination of two distinct step functions on the interval

[x0, x0]. Therefore, any extreme point H∗ of the feasible set of (7) must be such that, for any

x ∈ (0, 1), either H∗(x) = x or H∗ is constant on an interval that contains x, which implies

H∗ is a contingent debt contract.

To better understand Proposition 3, recall that the optimality of standard debt con-
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tracts in Innes (1990) is due to (i) the risk-neutrality and the limited-liability structure of

the problem, and (ii) the monotone likelihood ratio property of the return distributions.

Indeed, for any incentive-compatible and individually-rational contract, risk neutrality al-

lows one to construct an individually-rational standard debt contract with the same ex-

pected payment. Meanwhile, the monotone likelihood ratio property ensures that this debt

contract incentivizes the entrepreneur to exert higher effort, thus relaxing the incentive-

compatibility constraint. Without the monotone likelihood ratio assumption, simply repli-

cating an individually-rational contract with a standard debt contract may distort incentives

and lead to less efficient effort and suboptimal outcomes. In this regard, Proposition 3 shows

that contingent debt contracts are enough to replicate the return level of all other feasible

contracts while preserving incentive compatibility and individual rationality. In essence, the

proposition separates the effects of risk neutrality and limited liability on security design

from the effects of the monotone likelihood ratio property.

In fact, with additional assumptions on the return distributions {Φ(·|e)}e≥0, the structure

of optimal contracts can be further simplified. For any N ∈ N and for any e ≥ 0, we say that

the function ϕe(·|e)/ϕ(·|e) is N-peaked if there exists N disjoint intervals {In}Nn=1 in [0, 1]

such that ϕe(x|e)/ϕ(x|e) is increasing in x on In for all n ∈ {1, . . . , N}, and is decreasing in

x on [0, 1]\∪N
n=1 In. Note that if ϕe(·|e)/ϕ(·|e) is increasing on [0, 1], then it is N -peaked with

N = 1. In particular, return distributions that satisfy MLRP are N -peaked with N = 1.

Furthermore, assume that the risk-free rate of return r and the required investment I are

such that (1 + r)I is in the interior of the set{∫ 1

0

H(x)ϕ(x|e) dx
∣∣∣∣H ∈ I(F , F ),

∫ 1

0

(x−H(x))ϕe(x|e) dx = C ′(e)

}
, (8)

for all e ≥ 0.

By establishing strong duality of the entrepreneur’s problem (7), together with Theorem 1,

Proposition 4 below identifies a sufficient condition for there to be an optimal contingent debt

contract with finitely many contingencies.

Proposition 4. Suppose that there exists N ∈ N such that for any e ≥ 0, the function

ϕe(·|e)/ϕ(·|e) is at most N-peaked. Then there is a contingent debt contract with at most

N + 2 contingencies that solves the entrepreneur’s problem (7).

The proof of Proposition 4 can be found in Appendix A.6. The essence of the proof is the

following observation: Under (8), strong duality holds for the entrepreneur’s problem (7).
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Thus, for each fixed e ≥ 0, an optimal security H∗ must also solve

sup
H∈I(F ,F )

[∫ 1

0

H(x)[(1 + λ∗
2)ϕ(x|e)− λ∗

1ϕe(x|e)] dx
]
, (9)

where λ∗
1 ̸= 0, λ∗

2 ≥ 0 are the Lagrange multipliers for the incentive compatibility and indi-

vidually rationality constraints, respectively. Since

(1 + λ∗
2)ϕ(x|e)− λ∗

1ϕe(x|e) ≥ 0 ⇐⇒ ϕe(x|e)
ϕ(x|e)

≤ 1 + λ∗
2

λ∗
1

=: λ∗,

and since ϕe(·|e)/ϕ(·|e) is at most N -peaked, the set of returns x under which ϕe(x|e)/ϕ(x|e)
is greater than or smaller than λ∗ must form an interval partition with at most 2N elements,

as depicted in Figure VIIA. It can then be shown that, for a contingent debt contract H∗ to

be optimal, H∗ cannot take two distinct values on any element where ϕe(x|e)/ϕ(x|e) > λ∗,

and that H∗(x) = x whenever ϕe(x|e)/ϕ(x|e) < λ∗, as depicted in Figure VIIB. Thus, there

must be at most N +1 partition elements on which H∗ is constant,29 and hence H∗ must be

a contingent debt contract with at most N + 2 contingencies.30

According to Proposition 4, if the return distributions {Φ(·|e)}e≥0 satisfy the regularity

condition so that ϕe(·|e)/ϕ(·|e) is at most N -peaked for all e, then not only would a contingent

debt contract be optimal for the entrepreneur, such an optimal contingent debt contract would

be simple, in the sense that it would have at most finitely many contingencies.

4.2 Security Design with Adverse Selection

Consider the following setting of security design in the presence of adverse selection, a setting

due to DeMarzo and Duffie (1999). There is a risk-neutral security issuer with discount rate

δ ∈ (0, 1) and a unit mass of risk-neutral investors. The issuer has an asset that generates a

random cash flow x ≥ 0 in period t = 1. The cash flow is distributed according to Φ0 ∈ F0,

which is supported on a compact interval normalized to [0, 1]. Because δ < 1, the issuer has

demand for liquidity in period t = 0 and therefore has an incentive to sell a limited-liability

security backed by the asset to raise cash. A security is a nondecreasing, right-continuous

function H : [0, 1] → R+ such that 0 ≤ H(x) ≤ x for all x. Let F (x) := x and F (x) := 0 for

all x ∈ [0, 1]. The set of securities can again be written as I(F , F ).

Given any security H ∈ I(F , F ), the issuer first observes a signal s ∈ S for the asset’s

cash flow. Then, taking as given an inverse demand schedule P : [0, 1] → R+, she chooses a

29Using this argument, the optimality of standard debt contracts under MLRP also follows immediately,
as MLRP would imply that ϕe(x|e)/ϕ(x|e) < λ∗ if and only if x < d for some d.

30An extra contingency with a face value d > 1 might be needed when H∗(1−) = 1.
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Figure VII
Optimal Contingent Debt with 2 Contingencies

fraction q ∈ [0, 1] of the security to sell. If a fraction q of the security is sold and the signal

realization is s, the issuer’s expected return is

qP (q)︸ ︷︷ ︸
revenue raised in t = 0

+δ · E[x− qH(x)|s]︸ ︷︷ ︸
residual return in t = 1

= q(P (q)− δE[H(x)|s]) + δE[x|s].

Investors observe the quantity q, update their beliefs about x, and decide whether to purchase.

DeMarzo and Duffie (1999) show that, in the unique equilibrium that survives the D1

criterion,31 the issuer’s profit under a security H, when the posterior expected value of the

security is E[H(x)|s] = z, is given by

Π(z|H) := (1− δ)z
1

1−δ

0 z−
δ

1−δ ,

where z0 is the lower bound of the support of E[H(x)|s]. Therefore, let Φ(·|s) be the condi-

tional distribution of the cash flow x given signal s, and let Ψ : S → [0, 1] be the marginal

distribution of the signal s. The expected value of a security H is then

Π(H) := (1− δ)

(
inf
s∈S

∫ 1

0

H(x)Φ(dx|s)
) 1

1−δ
∫
S

(∫ 1

0

H(x)Φ(dx|s)
)− δ

1−δ

Ψ(ds).

31An equilibrium in this market is a pair (P,Q) of measurable functions such that Q(E[H(x)|s])(P ◦
Q(E[H(x)|s])−δE[H(x)|s]) ≥ q(P (q)−δE[H(x)|s]) for all q ∈ [0, 1] with probability 1, and P ◦Q(E[H(x)|s]) =
E[H(x)|Q(E[H(x)|s])] with probability 1.
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As a result, the issuer’s security design problem can be written as

sup
H∈I(F ,F )

Π(H).

Using a variational approach, DeMarzo and Duffie (1999) characterize several general

properties of the optimal securities without solving for them explicitly. They then specialize

the model by assuming that the signal structure {Φ(·|s)}s∈S has a uniform worst case, a

condition slightly weaker than the monotone likelihood ratio property that requires the cash

flow distribution to be smallest in the sense of FOSD under some s0, conditional on every

interval I of [0, 1].32 With this assumption, DeMarzo and Duffie (1999) show that a standard

debt contract Hd(x) := min{x, d} is optimal.

With Theorem 1, we are able to generalize this result and solve for an optimal security

while relaxing the uniform-worst-case assumption. As in Section 4.1, we say that a security is

a contingent debt contract if there exists an interval partition {In} of [0, 1] and {dn} ⊆ (0, 1]

such that H(x) = Hdn(x) for all x ∈ In. Instead of a uniform worst case, we only assume

that there is a worst signal s0 such that Φ(·|s) dominates Φ(·|s0) in the sense of FOSD for

all s ∈ S. With this assumption, the issuer’s security design problem can be written as

sup
H∈I(F ,F ),z≥0

[
(1− δ)z

1
1−δ

∫
S

(∫ 1

0

H(x)Φ(dx|s)
)− δ

1−δ

Ψ(ds)

]

s.t.

∫ 1

0

H(x)Φ(dx|s0) = z. (10)

As shown by Proposition 5 below, there always exists an optimal security in this setting that

is a contingent debt contract.

Proposition 5. There is a contingent debt contract that solves the issuer’s problem (10).

Furthermore, if Φ(·|s) has full support on [0, 1] for all s ∈ S, this solution is unique.

Overall, this section showcases the unifying role of extreme points of monotone function

intervals in security design. The security design literature has rationalized the existence of

different financial securities observed in practice under a variety of economic environments

and assumptions. Doing so has strengthened the robustness of these securities as optimal

contracts. But that variety also makes it hard to sort the essential modeling ingredients from

32Specifically, they assume that there exists some s0 ∈ S such that, for any s ∈ S and for any interval
I ⊂ [0, 1], (i) Φ(I|s0) = 0 implies Φ(I|s) = 0, and (ii) the conditional distribution of the asset’s cash flow
given signal realization s and given that the cash flow falls in an interval I, which is denoted Φ|I(·|s)/Φ(I|s),
dominates that conditional distribution given signal realization s0, denoted Φ|I(·|s0)/Φ(I|s0), in the sense of
first-order stochastic dominance.
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the inessential ones. And the core features that connect these environments are not readily

apparent.

An advantage of recasting feasible securities as a monotone function interval is that it

strips the problem down to its basic elements. Whether the setting has hidden action or

hidden information, and whether the asset’s cash flow distributions exhibit MLRP, are not

defining. Limited liability, monotone contracts, and convexity of the issuer’s objective func-

tion are the core elements that deliver debt as an optimal security. The terms of the debt

contract somewhat differ from those of a standard one, as the face value of the debt is now

contingent on the asset’s cash flow, but the nature of debt contracts, which never has the

issuer and investor share in the asset’s equity and grants the issuer only residual rights, still

prevails.

Without knowledge of the extreme points of monotone function intervals, solving the

security design problem without the MLRP assumption would have been substantially harder.

Thus, just as in the other economic applications of this paper, Theorem 1 offers a unified

approach to answering classic economic questions that have been previously answered by

case-specific approaches.

5 Conclusion

We characterize the extreme points of monotone function intervals and apply this result

to various economic problems. We show that any extreme point of a monotone function

interval must either coincide with one of the montone function interval’s bounds, or be

constant on an interval in its domain, where at least one end of the interval reaches one of

the bounds. Using this result, we characterize the distributions of posterior quantiles, which

coincides with a monotone function interval. We apply this insight to topics in political

economy, Bayesian persuasion, and the psychology of judgment. Furthermore, monotone

function intervals provide a common structure to security design. We unify and generalize

seminal results in that literature when either adverse selection or moral hazard afflicts the

environment.

It is worthwhile acknowledging the paper’s limitations. Regarding the distributions of

posterior quantiles, the analysis is restricted to a one-dimensional state space. Moreover,

while the characterization parallels the well-known characterization of distributions of pos-

terior means, it provides little intuition for how distributions of other statistics may behave.

In particular, while the characterization of distributions of posterior quantiles allows one to

compare Bayesian persuasion problems when the receiver has either an absolute loss func-

tion or a quadratic loss function, optimal signals under other loss functions remain largely
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under-explored.

Regarding security design, the clearest limitation is the absence of risk aversion. The

majority of the security design literature features risk neutral agents, and this risk neutrality

makes the design problem amenable to being analyzed using extreme points of monotone

function intervals. Nevertheless, security design with risk averse agents has gotten less at-

tention among researchers and deserves further study. Allen and Gale (1988); Malamud, Rui

and Whinston (2010); Gershkov, Moldovanu, Strack and Zhang (2023) study the problem

and provide many intriguing results thus far.

Notwithstanding these limitations, other applications involving monotone function inter-

vals undoubtedly exist. For instance, their link to the distributions of posterior quantiles

opens many potential research avenues. When consumers’ values or firms’ marginal costs

follow distributions, different points on the inverse supply and demand curves are quantiles,

which might contain further applications in consumer or firm theory. Inequality is often

measured as an upper percentile of the wealth or income distribution, making it eligible for

analysis. Likewise, settings in which the feasible set can be represented as a monotone func-

tion interval, such as R&D investments and screening problems with stochastic inventories,

are yet other directions for future work.
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Appendix

A.1 Proof of Theorem 1

Consider any F , F ,H ∈ F such that F (x) ≤ H(x) ≤ F (x) for all x ∈ R. We first show that if H satisfies

1 and 2 for a countable collection of intervals {[xn, xn)}∞n=1, then H must be an extreme point of I(F , F ).

To this end, first note that I(F , F ) ⊆ F is a convex subset of the collection of Borel-measurable functions

on R. Since the collection of Borel-measurable functions on R is a real vector space, it suffices to show

that for any Borel-measurable Ĥ with Ĥ ̸= 0, either H + Ĥ /∈ I(F , F ) or H − Ĥ /∈ I(F , F ). Clearly, if

H+Ĥ /∈ F or H−Ĥ /∈ F , then it must be that either H+Ĥ /∈ I(F , F ) or H−Ĥ /∈ I(F , F ). Thus, we may

suppose that both H + Ĥ and H − Ĥ are in F . Now notice that since Ĥ ̸= 0, there exists x0 ∈ R such that

Ĥ(x0) ̸= 0. If x0 /∈ ∪∞
n=1[xn, xn), then H(x0) ∈ {F (x0), F (x0)} and hence either H(x0)+ |Ĥ(x0)| > F (x0) or

H(x0)− |Ĥ(x0)| < F (x0). Thus, it must be that either H + Ĥ /∈ I(F , F ) or H − Ĥ /∈ I(F , F ). Meanwhile,

if x0 ∈ [xn, xn) for some n ∈ N, then Ĥ must be constant on [xn, xn) as H is constant on [xn, xn) and

both H + Ĥ and H − Ĥ are nondecreasing. Thus, either H(xn) + |Ĥ(xn)| = F (xn) + |Ĥ(x0)| > F (xn), or

H(x−n )− |Ĥ(x−n )| = F (x−n )− |Ĥ(x0)| < F (x−n ), and hence either H + Ĥ /∈ I(F , F ) or H − Ĥ /∈ I(F , F ), as

desired.

Conversely, suppose that H is an extreme point of I(F , F ). To show that H must satisfy 1 and 2 for

some countable collection of intervals {[xn, xn)}∞n=1, we first claim that if F (x−0 ) < H(x0) := η < F (x0) for

some x0 ∈ R, then it must be that either H(x) = H(x0) for all x ∈ [F
−1

(η+), x0] or H(x) = H(x0) for all

x ∈ [x0, F
−1(η)). Indeed, suppose the contrary, so that there exists x ∈ [F

−1
(η+), x0) and x ∈ (x0, F

−1(η))

such that H(x) < H(x0) < H(x−). Then, since H is right-continuous, and since H(x) < H(x0) <

H(x−), it must be that H−1(η) > F
−1

(η+) and H−1(η+) < F−1(η). Moreover, since x 7→ F (x−) is

left-continuous, H−1(η) > x ≥ F
−1

(η+) implies F (H−1(η)−) > η. Likewise, H−1(η+) < x < F−1(η)

implies that F (H−1(η+)) < η. Now define a function Φ : [0, 1]2 → R2 as

Φ(ε1, ε2) :=

(
η − ε2 − F (H−1((η + ε1)

+))

F (H−1(η − ε2)
−)− η − ε1

)
,

for all (ε1, ε2) ∈ [0, 1]2. Then Φ is continuous at (0, 0) and Φ(0, 0) ∈ R2
++. Therefore, there exists (ε̂1, ε̂2) ∈

[0, 1]2\{(0, 0)} such that Φ(ε̂1, ε̂2) ∈ R2
++. Let η := η − ε̂2 and η := η + ε̂1, it then follows that

F (H−1(η+)−) ≤ F (H−1(η+)) < η < η < η < F (H−1(η)−) ≤ F (H−1(η)). (A.11)

Now consider the function h : [H−1(η), H−1(η+)] → [η, η], defined as h(x) := H(x), for all x ∈ [H−1(η), H−1(η+)].

Clearly, h is nondecreasing. As a result, since the extreme points of the collection of uniformly bounded

monotone functions are step functions (see, for instances, Skreta 2006 and Börgers 2015), η < h(x0) =

H(x0) = η < η implies that there exists distinct nondecreasing, right-continuous functions h1, h2 that map

from [H−1(η), H−1(η+)] to [η, η], as well as a constant λ ∈ (0, 1) such that h(x) = λh1(x) + (1 − λ)h2(x),
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for all x ∈ [H−1(η), H−1(η+)]. Now define Ĥ1, Ĥ2 as

Ĥ1(x) :=

{
H(x), if x /∈ [H−1(η), H−1(η+)]

h1(x), if x ∈ [H−1(η), H−1(η+)]
;

and

Ĥ2(x) :=

{
H(x), if x /∈ [H−1(η), H−1(η+)]

h2(x), if x ∈ [H−1(η), H−1(η+)]

Clearly, λĤ1 + (1− λ)Ĥ2 = H.

It now remains to show that Ĥ1, Ĥ2 ∈ I(F , F ). Indeed, for any i ∈ {1, 2} and for any x, y ∈ R

with x < y, if either x, y /∈ [H−1(η), H−1(η+)], then Ĥi(x) = H(x) ≤ H(y) /∈ Ĥi(y). Meanwhile, if

x, y ∈ [H−1(η), H−1(η+)], then Ĥi(x) = hi(x) ≤ hi(y) = Ĥi(x). If x < H−1(η) and y ∈ [H−1(η), H−1(η+)],

then Ĥi(x) = H(x) ≤ η ≤ hi(y) = Ĥi(y). Likewise, if y > H−1(η+) and x ∈ [H−1(η), H−1(η+)], then

Ĥi(x) = hi(x) ≤ η ≤ H(y) = Ĥi(y). Together, Ĥi must be nondecreasing, and hence Ĥi ∈ F for all

i ∈ {1, 2}. Moreover, for any i ∈ {1, 2} and for all x ∈ [H−1(η), H−1(η+)], from (A.11), we have

F (x) ≤ F (H−1(η+)) < η ≤ hi(x) ≤ η < F (H−1(η)−) ≤ F (x).

Together with H ∈ I(F , F ), it then follows that F (x) ≤ Ĥi(x) ≤ F (x) for all x ∈ R, and hence Ĥi ∈
I(F , F ) for all i ∈ {1, 2}. Consequently, there exists distinct Ĥ1, Ĥ2 ∈ I(F , F ) and λ ∈ (0, 1) such that

H = λĤ1 + (1− λ)Ĥ2. Thus H is not an extreme point of I(F , F ), as desired.

As a result, for any extreme point H of I(F , F ), the set {x ∈ R|F (x) < H(x) < F (x)} can be partitioned

into three classes of open intervals: IF , IF , and IF ,F such that for any open interval (x, x) ∈ IF , H is a

constant on [x, x) and H(x) = F (x); for any open interval (x, x) ∈ IF , H is a constant on [x, x) and

H(x−) = F (x−); and for any open interval (x, x) ∈ IF ,F , H is a constant on [x, x) and F (x) = H(x) =

H(x−) = F (x−). Note that since F , F ,H are nondecreasing and since H ∈ I(F , F ), every interval in IF

and IF must have at least one of its end points being a discontinuity point of H. Since H has at most

countably many discontinuity points, IF and IF must be countable. Meanwhile, any distinct intervals

(x1, x1), (x2, x2) ∈ IF ,F must be disjoint. Moreover, for any pair of these intervals with x1 < x2, there

must exist some x0 ∈ (x1, x2) at which H is discontinuous. Therefore, since H has at most countably many

discontinuity points, IF ,F must be countable as well.

Together, for any extreme point H of I(F , F ), there exists countably many intervals {[xn, xn)}∞n=1 :=

IF ∪ IF ∪ IF ,G such that H satisfies 1 and 2. This completes the proof. ■

A.2 Proof of Theorem 2

To show that Hτ ⊆ I(F τ
R, F

τ
L), consider any H ∈ Hτ . Let µ ∈ M and any r ∈ R be a signal and a selection

rule, respectively, such that Hτ (·|µ, r) = H. By the definition of Hτ (·|µ, r), it must be that, for all x ∈ R,

Hτ (x|µ, r) ≤ µ({G ∈ F0|G−1(τ) ≤ x}) = µ({G ∈ F0|G(x) ≥ τ}).
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Now consider any x ∈ R. Clearly, µ({G ∈ F0|G(x) ≥ τ}) ≤ 1, since µ is a probability measure. Moreover, let

M+
x (q) := µ({G ∈ F0|G(x) ≥ q}) for all q ∈ [0, 1]. From (1), it follows that the left-limit of 1−M+

x is a CDF

and a mean-preserving spread of a Dirac measure at F (x). Therefore, whenever τ ≥ F (x), then M+
x (τ) can

be at most F (x)/τ to have a mean of F (x).33 Together, this implies that µ({G ∈ F0|G(x) ≥ τ}) ≤ F τ
L(x)

for all x ∈ R.

At the same time, by the definition of Hτ (·|µ, r), it must be that, for all x ∈ R,

Hτ (x−|µ, r) ≥ µ({G ∈ F0|G−1(τ+) < x}) = µ({G ∈ F0|G(x) > τ}).

Now consider any x ∈ R. Since µ is a probability measure, it must be that µ({G ∈ F0|G(x) > τ}) ≥ 0.

Furthermore, let M−
x (q) := µ({G ∈ F0|G(x) > q}) for all q ∈ [0, 1]. From (1), it follows that 1 − M−

x is

a CDF and a mean-preserving spread of a Dirac measure at F (x). Therefore, whenever τ ≤ F (x), then

M−
x (τ) must be at least (F (x)− τ)/(1− τ) to have a mean of F (x).34 Together, this implies that µ({G ∈

F0|G(x) > τ}) ≥ F τ
R for all x ∈ R, which, in turn, implies that F τ

R(x) ≤ Hτ (x−|µ, r) ≤ Hτ (x|µ, r) ≤ F τ
L(x)

for all x ∈ R, as desired.

To prove that I(F τ
R, F

τ
L) ⊆ Hτ , we first show that for any extreme point H of I(F τ

R, F
τ
L), there exists a

signal µ ∈ M and a selection rule r ∈ R such that H(x) = Hτ (x|µ, r) for all x ∈ R. Consider any extreme

point H of I(F τ
R, F

τ
L). By Theorem 1, there exists a countable collection of intervals {(xn, xn)}∞n=1 such

that H satisfies 1 and 2. Since (1−F τ
L(x))F

τ
R(x) = 0 for all x /∈ [F−1(τ), F−1(τ+)], there exists at most one

n ∈ N such that 0 < H(xn) = F τ
L(xn) = F τ

R(x
−
n ) = H(x−n ) < 1. Therefore, for x and x defined as

x := sup{xn|n ∈ N, H(xn) = F τ
L(xn)},

and

x := inf{xn|n ∈ N, H(x−n ) = F τ
R(x

−
n )},

respectively, it must be that x ≥ x, and that for all n ∈ N, either xn ≤ x and H(xn) = F τ
L(xn); or xn ≥ x

and H(x−n ) = F τ
R(x

−
n ). Henceforth, let N1 be the collection of n ∈ N such that xn ≤ x and H(xn) = F τ

L(xn),

and let N2 be the collection of n ∈ N such that xn ≥ x and H(x−n ) = F τ
R(x

−
n ). Note that N1 ∪ N2 = N and

that |N1 ∩ N2| ≤ 1, with xn = x and xn = x whenever n ∈ N1 ∩ N2.

We now construct a signal µ ∈ M and a selection rule r ∈ R such that Hτ (·|µ, r) = H. To this end,

let η := H(x−) − H(x) and let x̂ := inf{x ∈ [x, x]|H(x) = H(x−)}. Note that by the definition of x and

x, if η > 0, then x̂ ∈ (x, x) and H(x) = H(x) for all x ∈ [x, x̂), while H(x) = H(x−) for all x ∈ [x̂, x). In

particular, F τ
L(x̂) ≥ H(x̂) = F τ

L(x) + η, and hence F (x̂)− τη ≥ F (x). Likewise, F (x̂) + (1− τ)η ≤ F (x−).

Let

y := F−1([F (x̂)− τη]+), and y := F−1(F (x̂) + (1− τ)η)).

It then follows that x ≤ y ≤ x̂ ≤ y ≤ x, with at least one inequality being strict if η > 0. Next, define F̂ as

33More specifically, to maximize the probability at τ , a mean-preserving spread of F (x) must assign probability
F (x)/τ at τ , and probability 1− F (x)/τ at 0.

34More specifically, to minimize the probability at τ , a mean-preserving spread of F0(x) must assign probability
(F (x)− τ)/(1− τ) at 1, and probability 1− (F (x)− τ)/(1− τ) at 0.
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follows: F̂ ≡ 0 if η = 0; and

F̂ (x) :=


0, if x < y

F (x)−(F (x̂)−τη)
η , if x ∈ [y, y)

1, if x ≥ y

,

if η > 0. Clearly F̂ ∈ F0 if η > 0, and x̂ ∈ [F̂−1(τ), F̂−1(τ+)]. Moreover, for all x ∈ R, let

F̃ (x) :=
F (x)− ηF̂ (x)

1− η
.

By construction, ηF̂ + (1− η)F̃ = F . From the definition of y and y, it can be shown that F̃ ∈ F0 as well.

Furthermore,

F̃ (x−)− F̃ (x) =
F (x−)− F (x)− η

1− η
=

1

1− η

[
τ

1− τ
(1− F (x−)) +

1− τ

τ
F (x)

]
.

Next, define F̃1 and F̃2 as follows:

F̃1(x) :=


F (x)

F (x)+α(F (x−)−F (x)−η)
, if x < x

F (x)α(F (x)−F (x)−η)
F (x)+α(F (x−)−F (x)−η)

, if x ∈ [x, x)

1, if x ≥ x

;

and

F̃2(x) :=


0, if x < x

(1−α)(F (x)−F (x)−η)
1−F (x−)+(1−α)(F (x−)−F (x)−η)

, if x ∈ [x, x)
F (x)−F (x)+(1−α)(F (x−)−F (x)−η)

1−F (x−)+(1−α)(F̃ (x−)−F̃ (x)−η)
, if x ≥ x

,

where

α :=
1−τ
τ F (x)

τ
1−τ (1− F (x−)) + 1−τ

τ F (x)
.

By construction, α̃F̃1+(1−α̃)F̃2 = F̃0, where α̃ ∈ (0, 1) is given by α̃ := [F (x)+α(F (x−)−F (x)−η)]/(1−η).

Moreover, F̃1(x) ≥ τ , and F̃2(x
−) ≤ τ .

Now define two classes of distributions, {F̃ x
1 }x≤x and {F̃ x

2 }x≥x, as follows:

F̃ x
1 (z) :=


0, if z < x

F̃ (x), if z ∈ [x, x)

F̃ (z), if z ≥ x

; and F̃ x
2 (z) :=


F̃ (z), if z < x

F̃ (x−), if z ∈ [x, x)

1, if z ≥ x

.

Note that, since F̃1(x) ≥ τ and F̃2(x
−) ≤ τ , x ∈ [(F̃ x

1 )
−1(τ), (F̃ x

1 )
−1(τ+)] for all x ≤ x and x ∈

[(F̃ x
2 )

−1(τ), (F̃ x
2 )

−1(τ+)] for all x ≥ x. Moreover, for any n ∈ N1 and for any m ∈ N2, let

F̃n
1 (z) :=

1

F̃ (xn)− F̃ (xn)

∫ xn

xn

F̃ x
1 (z)F̃0(dx),
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and

F̃m
2 (z) :=

1

F̃ (xm)− F̃ (xm)

∫ xm

xm

F̃ x
2 (z) dF̃ (dx),

for all z ∈ R. By construction, F̃n
1 , F̃

m
2 ∈ F0 and xn ∈ [(F̃n

1 )
−1(τ), (F̃n

1 )
−1(τ+)], xm ∈ [(F̃m

2 )−1(τ), (F̃m
2 )−1(τ+)]

for all n ∈ N1 and m ∈ N2.

Next, for any x ∈ R, let G̃x ∈ F0 be defined as

G̃x(z) :=


F̃ x
1 (z), if x ∈ (−∞, x]\ ∪n∈N1 [xn, xn)

F̃n
1 (z), if x ∈ [xn, xn), n ∈ N1

F̃ x
2 (z), if x ∈ [x,∞)\ ∪m∈N2 [xm, xm)

F̃m
2 (z), if x ∈ [xm, xm), m ∈ N2

,

for all z ∈ R. Let

H̃(x) :=


H(x)
1−η , if x < x
H(x)
1−η , if x ∈ [x, x)

H(x)−η
1−η , if x ≥ x

,

and define µ̃ as

µ̃({G̃x ∈ F0|x ≤ z}) := H̃(z),

for all z ∈ R. Then, by construction, for any z ∈ R,∫
F
F (z)µ̃(dF ) =

∫
R
G̃x(z)H̃(dx) = F̃ (z). (A.12)

Moreover, let r̃ : F0 × (0, 1) → ∆(R) be defined as

r̃(G, τ̂) :=

{
δ{G−1(τ̂+)}, if G = G̃x, x ≥ x

δ{G−1(τ̂)}, otherwise
,

for all G ∈ F0 and for all τ̂ ∈ (0, 1). It then follows that Hτ (x|µ̃, r̃) = H̃(x) for all x ∈ R. Next, let

µ ∈ ∆(F), r ∈ R together be defined as

µ := (1− η)µ̃+ ηδ{F̂},

and

r(G, τ̂) :=

{
δ{x̂}, if G = F̂ , τ = τ̂

r̃(G, τ̂), otherwise
,

for all G ∈ F0 and for all τ̂ ∈ (0, 1). Since F = ηF̂ + (1 − η)F̃ , together with (A.12), we have µ ∈ M.

Moreover, since Hτ (·|µ̃, r̃) = H̃, we have Hτ (x|µ, r) = H(x) for all x ∈ R.

Lastly, let Γ be a collection of probability measures γ ∈ ∆(R × F0) such that γ({(x,G) ∈ R × F0|x ∈
[G−1(τ), G−1(τ+)]}) = 1 and ∫

R×F0

G(x)γ(dx,dG) = F (x),
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for all x ∈ R. Define a linear functional Ξ : Γ → F0 as

Ξ(γ)[x] := γ((−∞, x],F0),

for all γ ∈ Γ and for all x ∈ R. Then, since for any Ĥ in the set of extreme points ext(I(F τ
R, F

τ
L)) of

I(F τ
R, F

τ
L), there exists µ̂ ∈ M and r̂ ∈ R such that Hτ (x|µ̂, r̂) = Ĥ(x) for all x ∈ R, it must be that

ext(I(F τ
R, F

τ
L)) ⊆ Ξ(Γ).

Now consider any H ∈ I(F τ
R, F

τ
L). Since I(F τ

R, F
τ
L) is a compact and convex set of a metrizable,

locally convex topological space,35 Choquet’s theorem implies that there exists a probability measure ΛH ∈
∆(I(F τ

R, F
τ
L)) with ΛH(ext(I(F τ

R, F
τ
L))) = 1 such that∫

I(F τ
R,F τ

L)
Ĥ(x)ΛH(dĤ) = H(x),

for all x ∈ R. Define a measure Λ̃H by

Λ̃H(A) := ΛH({Ξ(γ)|γ ∈ A}),

for all measurable A ⊆ Γ. Since ΛH(ext(I(F τ
R, F

τ
L))) = 1 and ext(I(F τ

R, F
τ
L)) ⊆ Ξ(Γ), Λ̃H is a probability

measure on Γ. For any x ∈ R and for any measurable A ⊆ F0, let

γ((−∞, x], A) :=

∫
Γ
γ̃((−∞, x], A)Λ̃H(dγ̃),

and let µ(A) := γ(R, A). By construction, for all x ∈ R,∫
F
G(x)µ(dG) =

∫
Γ

(∫
R×F0

G(x)γ̃(dx̃, dG)

)
Λ̃H(dγ̃) = F (x),

and hence µ ∈ M. Furthermore, by the disintegration theorem (c.f., Çinlar 2010, theorem 2.18), there exists

a transition probability ξ : F0 → ∆(R) such that γ(dx,dG) = ξ(dx|G)µ(dG). Let r(G, τ̂) := ξ(G) for all

G ∈ F0 and for all τ̂ ∈ (0, 1). Since Λ̃H(Γ) = 1, we have r ∈ R. Finally, for any x ∈ R, since Ξ is affine,

Hτ (x|µ, r) = γ((−∞, x],F0) =Ξ(γ)[x]

=

∫
Γ
Ξ(γ̃)[x]Λ̃H(dγ̃)

=

∫
ext(I(F τ

R,F τ
L))

Ĥ(x)ΛH(dĤ)

=H(x),

as desired. This completes the proof. ■

35To see this, recall that for any sequence {Hn} ⊆ I(F τ
R, F

τ
L), Helly’s selection theorem implies that there exists a

subsequence {Hnk
} ⊆ {Hn} that converges pointwise (and hence, in weak-*) to some H ∈ I(F τ

R, F
τ
L).
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A.3 Proof of Theorem 3

By Theorem 2,

H̃τ ⊆ Hτ = I(F τ
R, F

τ
L).

It remains to show that ⋃
ε>0

I(F τ,ε
R , F τ,ε

L ) ⊆ H̃τ .

To this end, let M̃τ be the collection of µ ∈ M such that µ({G ∈ F0|G−1(τ) < G−1(τ+)}) = 0. Consider

any ε > 0 and any extreme point H of I(F τ,ε
R , F τ,ε

L ). By Theorem 1, there exists a countable collection of

intervals {(xn, xn)}∞n=1 such that H satisfies 1 and 2. Since (1 − F τ,ε
R (x))F τ,ε

L (x) = 0 for all x ̸= F−1
0 (τ),

there exists at most one n ∈ N such that 0 < H(xn) = F τ,ε
R (xn) = F τ,ε

L (x−n ) = H(x−n ) < 1. Therefore, for x

and x defined as

x := sup{xn|n ∈ N, H(xn) = F τ,ε
R (xn)} and x := inf{xn|n ∈ N, H(x−n ) = F τ,ε

L (x−n )},

respectively, it must be that x ≥ x, and that, for all n ∈ N, either xn ≤ x and H(xn) = F τ,ε
L (xn), or

xn ≥ x and H(x−n ) = F τ,ε
R (x−n ). Henceforth, let N1 be the collection of n ∈ N such that xn ≤ x and

H(xn) = F τ,ε
L (xn), and let N2 be the collection of n ∈ N such that xn ≥ x and H(x−n ) = F τ,ε

R (x−n ). Note

that N1 ∪ N2 = N and that |N1 ∩ N2| ≤ 1, with xn = x and xn = x whenever n ∈ N1 ∩ N2.

We now construct a signal µ ∈ M̃τ such that Hτ (·|µ) = H. First, let η := H(x−) − H(x) and let

x̂ := inf{x ∈ [x, x]|H(x) = H(x−)}. Note that, by the definition of x and x, if η > 0, then x̂ ∈ (x, x) and

H(x) = H(x) for all x ∈ [x, x̂), while H(x) = H(x−) for all x ∈ [x̂, x). In particular, F τ,ε
L (x̂) ≥ H(x̂) =

F τ,ε
L (x) + η, and hence F (x̂)− (τ + ε)η ≥ F (x). Likewise, F (x̂) + (1− τ + ε)η ≤ F (x−). Now let

y := F−1([F (x̂)− τη]), and y := F−1(F (x̂) + (1− τ)η).

It then follows that x ≤ y ≤ x̂ ≤ y ≤ x, with at least one inequality being strict if η > 0. Next, define F̂ as

follows: F̂ ≡ 0 if η = 0; and

F̂ (x) :=


0, if x < y

F (x)−(F (x̂)−τη)
η , if x ∈ [y, y)

1, if x ≥ y

,

if η > 0. Clearly F̂ ∈ F0 if η > 0, and x̂ = F̂−1(τ). Moreover, for all x ∈ R, let

F̃ (x) :=
F (x)− ηF̂ (x)

1− η
.

By construction, ηF̂ + (1− η)F̃ = F . From the definition of y and y, it can be shown that F̃ ∈ F0 as well.

Furthermore,

F̃ (x−)− F̃ (x) =
F (x−)− F (x)− η

1− η
=

1

1− η

[
τ − ε

1− (τ − ε)
(1− F (x−)) +

1− (τ + ε)

τ + ε
F (x)

]
.
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Next, define F̃1 and F̃2 as follows:

F̃1(x) :=


F (x)

F (x)+α(F (x−)−F (x)−η)
, if x < x

F (x)α(F (x)−F (x)−η)
F (x)+α(F (x−)−F (x)−η)

, if x ∈ [x, x)

1, if x ≥ x

;

and

F̃2(x) :=


0, if x < x

(1−α)(F (x)−F (x)−η)
1−F (x−)+(1−α)(F (x−)−F (x)−η)

, if x ∈ [x, x)
F (x)−F (x)+(1−α)(F (x−)−F (x)−η)

1−F (x−)+(1−α)(F̃ (x−)−F̃ (x)−η)
, if x ≥ x

,

where

α :=

1−(τ+ε)
τ+ε F (x)

τ−ε
1−(τ−ε)(1− F (x−)) + 1−(τ+ε)

τ+ε F (x)
.

By construction, α̃F̃1+(1−α̃)F̃2 = F̃ , where α̃ ∈ (0, 1) is given by α̃ := [F (x)+α(F (x−)−F (x)−η)]/(1−η).

Moreover, F̃1(x) = τ + ε > τ , and F̃2(x
−) = τ − ε < τ .

Now define two classes of distributions, {F̃ x
1 }x≤x and {F̃ x

2 }x≥x, as follows:

F̃ x
1 (z) :=


0, if z < x

F̃ (x), if z ∈ [x, x)

F̃ (z), if z ≥ x

; and F̃ x
2 (z) :=


F̃ (z), if z < x

F̃ (x−), if z ∈ [x, x)

1, if z ≥ x

.

Note that, since F̃1(x) > τ and F̃2(x
−) < τ , x = (F̃ x

1 )
−1(τ) = (F̃ x

1 )
−1(τ+) for all x ≤ x and x = (F̃ x

2 )
−1(τ) =

(F̃ x
2 )

−1(τ+) for all x ≥ x. Moreover, for any n ∈ N1 and for any m ∈ N2, let

F̃n
1 (z) :=

1

F̃ (xn)− F̃ (xn)

∫ xn

xn

F̃ x
1 (z)F̃0(dx),

and

F̃m
2 (z) :=

1

F̃ (xm)− F̃ (xm)

∫ xm

xm

F̃ x
2 (z)F̃0(dx),

for all z ∈ R. By construction, F̃n
1 , F̃

m
2 ∈ F0 and xn = (F̃n

1 )
−1(τ) = (F̃n

1 )
−1(τ+), xm = (F̃m

2 )−1(τ) =

(F̃m
2 )−1(τ+) for all n ∈ N1 and m ∈ N2. Next, for any x ∈ R, let G̃x ∈ F0 be defined as

G̃x(z) :=


F̃ x
1 (z), if x ∈ (−∞, x]\ ∪n∈N1 [xn, xn)

F̃n
1 (z), if x ∈ [xn, xn), n ∈ N1

F̃ x
2 (z), if x ∈ [x,∞)\ ∪m∈N2 [xm, xm)

F̃m
2 (z), if x ∈ [xm, xm), m ∈ N2

,

for all z ∈ R. Let

H̃(x) :=


H(x)
1−η , if x < x
H(x)
1−η , if x ∈ [x, x)

H(x)−η
1−η , if x ≥ x

,

47



and define µ̃ as

µ̃({G̃x ∈ F0|x ≤ z}) := H̃(z),

for all z ∈ R. Then, by construction, for any z ∈ R,∫
F0

G(z)µ̃(dG) =

∫
R
G̃x(z)H̃(dx) = F̃ (z). (A.13)

Furthermore, Hτ (x|µ̃) = H̃(x) for all x ∈ R. As a result, from (A.13), for µ ∈ ∆(F0) defined as

µ := (1− η)µ̃+ ηδ{F̂},

since F = ηF̂ + (1− η)F̃ , it must be that µ ∈ M̃τ . Moreover, since Hτ (·|µ̃) = H̃, we have Hτ (x|µ) = H(x)

for all x ∈ R.

Lastly, consider any H ∈ I(F τ,ε
R , F τ,ε

L ). Since I(F τ,ε
R , F τ,ε

L ) is a convex and compact set in a metrizable

space, Choquet’s theorem implies that there exists a probability measure ΛH ∈ ∆(I(F τ,ε
R , F τ,ε

L )) that assigns

probability 1 to ext(I(F τ,ε
R , F τ,ε

L )) such that

H(x) =

∫
I(F τ,ε

R ,F τ,ε
L )

H̃(x)ΛH(dH̃).

Meanwhile, define the linear functional Ξ : M̃τ → F0 as

Ξ(µ̃)[x] := µ̃({G ∈ F0|G−1(τ) ≤ x}),

for all µ̃ ∈ M̃τ and for all x ∈ R. Now define a probability measure Λ̃ on M̃τ by

Λ̃H(A) := ΛH({Ξ(µ̃)|µ̃ ∈ A}),

for all A ⊆ M̃τ . Then, since ΛH(ext(I(F τ,ε
R , F τ,ε

L ))) = 1 and since, for any H̃ ∈ ext(I(F τ,ε
R , F τ,ε

L )), there

exists µ̃ ∈ M̃τ such that H(x) = Hτ (x|µ̃), it must be that Λ̃H(M̃τ ) = 1, and hence Λ̃H is a probability

measure on M̃τ . Let µ̃ ∈ M̃τ be defined as

µ̃(A) :=

∫
M̃τ

µ(A)Λ̃H(dµ),

for all measurable A ⊆ F0. Then, since Ξ is linear, it follows that

H(x) =

∫
I(F τ,ε

R ,F τ,ε
L )

H̃(x)ΛH(dH̃) =

∫
M̃τ

Ξ(µ)[x]Λ̃H(dµ)

=Ξ(µ̃)[x]

=Hτ (x|µ̃),
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and therefore, H ∈ H̃τ . Together, for any ε > 0, any H ∈ I(F τ,ε
R , F τ,ε

L ) must be in H̃τ . In other words,⋃
ε>0

I(F τ,ε
R , F τ,ε

L ) ⊆ H̃τ .

This completes the proof. ■

A.4 Proof of Corollary 1

For 1, consider any H ∈ Hq. By Theorem 2, H ∈ I(F q
R, F

q
L). Thus, (F q

L)
−1(τ) ≤ H−1(τ) ≤ H−1(τ+) ≤

(F q
R)

−1(τ+), and therefore [H−1(τ), H−1(τ+)] ⊆ [(F q
L)

−1(τ), (F q
R)

−1(τ+)]. Conversely, consider any interval

Q = [x, x] ⊆ [(F q
L)

−1(τ), (F q
R)

−1(τ+)]. Then, let H be defined as

H(x) :=


0, if x < x

τ, if x ∈ [x, x)

1, if x ≥ x

,

for all x ∈ R. Then H ∈ I(F q
L, F

q
R) and Q = [H−1(τ), H−1(τ+)]. Moreover, by Theorem 2, H ∈ Hq, as

desired.

For 2, consider any H ∈ H̃q. By Theorem 2, H ∈ I(F q
R, F

q
L). Thus, it must be that [H−1(τ), H−1(τ+)] ⊆

[(F q
L)

−1(τ), (F q
R)

−1(τ)]. Conversely, for any x̂ ∈ ((F q
L)

−1(τ), (F q
R)

−1(τ+)), note that since x̂ > (F q
L)

−1(τ)

and since F is continuous, we have F (x̂)/τ > q. Similarly, we also have (F (x̂) − τ)/(1 − τ) < q. Let

ε := min{F (x̂)/τ − q, q− (F (x̂)− τ)/(1− τ)}. Then, either x̂ = (F q,ε
L )−1(τ) or x̂ = (F q,ε

R )−1(τ). Since both

F q,ε
L and F q,ε

R are in I(F q,ε
R , F q,ε

L ), Theorem 3 implies that x̂ = H−1(τ) for some H ∈ H̃q. Lastly, note that

under a signal µ ∈ M such that µ assigns probability τ to F τ
L and probability 1− τ to F τ

R, we have µ ∈ M̃q

and Hq(x|µ) = τ for all x ∈ [(F q
L)

−1(τ), (F q
R)

−1(τ)]. Hence, [(F q
L)

−1(τ), (F q
R)

−1(τ)] ⊆ [H−1(τ), H−1(τ+)]

for some H ∈ H̃q, as desired.

■

A.5 Proofs of Proposition 3 and Proposition 5

We prove the following result that leads to Proposition 3 and Proposition 5 immediately.36

Theorem A.1. Let F (x) := x and F (x) := 0 for all x ∈ [0, 1]. For any J ∈ N, for any collection of

bounded linear functionals {Γj}Jj=1 on L1([0, 1]) and for any collection {γj}Jj=1 ⊆ R, let C be a convex subset

of I(F , F ) defined as

C :=
{
H ∈ I(F , F )|Γj(H) ≥ γj , ∀j ∈ {1, . . . , J}

}
.

36Rolewicz (1984, 1986) characterizes the extreme points of bounded Lipschitz functions defined on the unit interval
that vanish at zero, and he shows that a function is an extreme point of the unit ball of this set if and only if the
absolute value of its derivative equals 1 almost everywhere (see also Farmer 1994; Smarzewski 1997). The convex set
of interest here is different. First, functions in I(F , F ) are subject to an additional monotonicity constraint. Second,
these functions are bounded by F and F under the pointwise dominance order, rather than the Lipschitz (semi) norm.
In particular, the derivatives of functions in I(F , F ) may have unbounded derivatives, whenever well-defined. Lastly,
Theorem A.1 below characterizes the extreme points of this set subject to finitely many other linear constraints, which
are not present in the characterization of Rolewicz (1984).
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Suppose that H ∈ C is an extreme point of C. Then there exists countably many intervals {[xn, xn)}∞n=1 such

that:

1. H(x) = x for all x /∈ ∪∞
n=1[xn, xn).

2. For all n,m ∈ N, with n ̸= m, H is constant on [xn, xn) and H(xn) ̸= H(xm).

3. For all but at most J many n ∈ N, H(xn) = xn.

Proof. Consider any extreme point H of C. We first claim that for any x ∈ (0, 1), it must be either

H(x) = x or H(y) = H(x) for all y ∈ (x, x + δ) for some δ > 0. To see this, note that since C is a

subset of I(F , F ) defined by J linear constraints, Proposition 2.1 of Winkler (1988) implies that there

exists {Hj}J+1
j=1 ⊆ ext(I(F , F )) and {λj}J+1

j=1 ⊆ [0, 1] such that H(x) =
∑J+1

j=1 λjHj(x) for all x ∈ [0, 1] and∑J+1
j=1 λj = 1. Now suppose that H(x) < x for some x ∈ (0, 1). Then there must exist a nonempty subset

J ⊆ {1, . . . , J + 1} such that Hj(x) < x for all j ∈ J and that Hj(x) = x for all j ∈ {1, . . . , J + 1}\J .

Since Hj is an extreme point of I(F , F ) for all j ∈ J , Theorem 1 implies that for each j ∈ J , there exists

an interval [xj , xj) containing x on which Hj is constant. Let (x, x) be the interior of the intersection of

{[xj , xj)}j∈J . Then it must be that

H(y) = αy + (1− α)η

for all y ∈ (x, x), for some η < x, and α ∈ (0, 1). Now suppose that for any δ > 0, there exists y ∈ (x, x+ δ)

such that H(x) < H(y). Take any δ̂ ∈ (0,min{(1 − α)(x − η)/(1 + α), x − x, x − x}) and let x∗ := x − δ̂

and x∗ := x + δ̂. Then it must be that H(y) < x for any y ∈ [x∗, x
∗] and that H(x∗) < x∗. Moreover,

the function h : [x∗, x
∗] → [H(x∗), H((x∗))] defined as h(y) := H(y) for all y ∈ [x∗, x

∗] must not be a

step function, since otherwise, as h is right-continuous on (x∗, x
∗), there must be some δ > 0 such that

H(y) = h(y) = h(x) = H(x) for all y ∈ [x, x + δ), a contradiction. Meanwhile, since each functional

Γj : L1([0, 1]) → R is bounded, Riesz’s representation implies that there must exist Φj ∈ L∞([0, 1]) such

that

Γj(H̃) =

∫ 1

0
H̃(x)Φj(x) dx,

for all H̃ ∈ I(F , F ). Therefore, since any extreme point of the collection of nondecreasing, right-continuous

functions h̃ from [x∗, x
∗] to [H(x∗), H(x∗)] such that∫ x∗

x∗

h̃(x)Φj(x) dx ≥ γj

for all j ∈ {1, . . . , J} is a step function with at most J + 1 steps, as implied by Proposition 2.1 of Winkler

(1988), the function h is not an extreme point of this collection. Thus, there exists two distinct functions

h1, h2 : [x∗, x
∗] → [H(x∗), H(x∗)] and λ ∈ (0, 1) such that h(y) = λh1(y) + (1 − λ)h2(y) for all y ∈ [x∗, x

∗]

and that ∫ x∗

x∗

hl(x)Φj(x) dx =

∫ x∗

x∗

H(x)Φj(x) dx, (A.14)
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for all j ∈ {1, . . . , J} and for all l ∈ {1, 2}. Now let H1, H2 be defined as

H1(y) :=

{
H(y), if y /∈ [x∗, x

∗]

h1(y), if y ∈ [x∗, x
∗]

; H2(y) :=

{
H(y), if y /∈ [x∗, x

∗]

h2(y), if y ∈ [x∗, x
∗]

.

Then, H = λH1 + (1− λ)H2 and H1 ̸= H2. Moreover, since h1(y), h2(y) ≤ H(x∗) < x∗ for all y ∈ [x∗, x
∗],

and since H ∈ I(F , F ), it must be that both H1 and H2 are in I(F , F ). Furthermore, by (A.14), it must

be that

Γj(Hl) =

∫ 1

0
Hl(x)Φj(x) dx =

∫
[0,1]\[x∗,x∗]

H(x)Φj(x) dx+

∫ x∗

x∗

hl(x)Φj(x) dx

=

∫
[0,1]\[x∗,x∗]

H(x)Φj(x) dx+

∫ x∗

x∗

H(x)Φj(x) dx

=

∫ 1

0
H(x)Φj(x) dx

≥γj ,

for all j ∈ {1, . . . , J} and for all l ∈ {1, 2}. Thus, H1, H2 ∈ C, a contradiction. Together, for any x ∈ (0, 1),

it must be either H(x) = x or H(y) = H(x) for all y ∈ (x, x+ δ) for some δ > 0.

Let X ⊆ [0, 1] be the collection of x ∈ [0, 1] such that H(x) = x. For any x /∈ X, let δx := sup{y ∈
[0, 1]|H(y) = H(x)} and δx := inf{y ∈ [0, 1]|H(y) = H(x)}. Then it must be δx < δx for all x /∈ X.

Moreover, for any x, y ∈ [0, 1]\X with x < y, H(x) < H(y) if and only if δx < δy. Therefore, [0, 1]\X can

be expressed as a union of a collection I of disjoint intervals. Since I is a collection of disjoint intervals on

[0, 1], each element of I must uniquely contain at least one rational number. Thus, there exists an injective

map from the collection I to a subset of rational numbers in [0, 1], and therefore the collection I must be

countable.

Enumerate I as {[xn, xn)}∞n=1 and suppose that there is a subset N of these intervals, with |N | > J , such

that H(xn) < xn. For each n ∈ N , since H(xn) < xn and since H(x) = x for all x /∈ ∪∞
n=1[xn, xn), H must

be discontinuous at xn. Let ηn := H(xn) −H(x−n ) for all n ∈ N , and let η := min{ηn}n∈N . Furthermore,

let ϕn
j ∈ R be defined as

ϕn
j :=

∫ xn

xn

Φj(x) dx,

for all n ∈ N and for all j ∈ {1, . . . , J}. Then the |N | × J matrix Φ := (ϕn
j )

n∈N
j∈{1,...,J} is a linear map from

R|N | to RJ . Since |N | > J , dim(null(Φ)) ≥ 1, and thus there must exists a nonzero vector {ĥn}n∈N such

that ∑
n∈N

ϕn
j ĥn = 0, (A.15)

for all j ∈ {1, . . . , J}. Let ε := min{η/4|ĥn|, (xn −H(xn))/4|ĥn|}n∈N , and let Ĥ be defined as

Ĥ(x) :=

{
0, if x /∈ ∪n∈N [xn, xn)

εĥn, if x ∈ [xn, xn), n ∈ N
.
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Then, since {ĥn}n∈N is a nonzero vector in R|N | and since ε > 0, Ĥ ̸= 0. Moreover, since ε < η/4|ĥn| for
all n ∈ N , H(x)− |Ĥ(x)| = H(xn)− ε|ĥn| > H(xn)− η/2 > H(x−n ) + η/4 > H(x) + |Ĥ(x)| for all x < xn
and for all n ∈ N . Therefore, both H + Ĥ and H − Ĥ are nondecreasing. Meanwhile, since for any n ∈ N
and for any x ∈ [xn, xn), H(x) + |Ĥ(x)| = H(xn) + ε|ĥn| < xn, both H + Ĥ and H − Ĥ are in I(F , F ). In

addition, by (A.15), for any j ∈ {1, . . . , J},∫ 1

0
(H(x) + Ĥ(x))Φj(x) dx =

∫
[0,1]\∪n∈N [xn,xn)

H(x)Φj(x) dx+

∫
∪n∈N [xn,xn)

H(x)Φj(x) dx+
∑
n∈N

ĥnϕ
n
j

=

∫ 1

0
H(x)Φj(x) dx

≥γj ,

and∫ 1

0
(H(x)− Ĥ(x))Φj(x) dx =

∫
[0,1]\∪n∈N [xn,xn)

H(x)Φj(x) dx+

∫
∪n∈N [xn,xn)

H(x)Φj(x) dx−
∑
n∈N

ĥnϕ
n
j

=

∫ 1

0
H(x)Φj(x) dx

≥γj .

Together, both H + Ĥ and H − Ĥ are in C and hence H is not an extreme point, a contradiction. This

completes the proof. ■

Proofs of Proposition 3 and Proposition 5. Proposition 3 and the existence part Proposition 5 follow imme-

diately from Theorem A.1, with J = 2 and J = 1, respectively, by noting that any H satisfying conditions

1 through 3 can be written as a contingent debt contract. The uniqueness part of Proposition 5 further

follows from the fact that the objective of (10) is strictly convex in H when Φ(·|s) has full support for all

s ∈ S, and hence, every solution must be an extreme point of the feasible set. ■

A.6 Proof of Proposition 4

Let Π∗(e) be the value of the entrepreneur’s problem (7) for a fixed e ≥ 0. We first show that there exists

Lagrange multipliers λ∗
1 ̸= 0 and λ∗

2 ≥ 0 such that

Π∗(e) = sup
H∈I(F ,F )

[ ∫ 1

0
(x−H(x))ϕ(x|e) dx+λ∗

1

(∫ 1

0
(x−H(x))ϕe(x|e) dx− C ′(e)

)
+λ∗

2

(∫ 1

0
H(x)ϕ(x|e) dx− (1 + r)I

)]
. (A.16)
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To this end, we adopt a similar argument as Nikzad (2023). For any fixed e ≥ 0 and for any γ ∈ R, let

M(γ) be the value of

sup
H∈I(F ,F )

[∫ 1

0
[x−H(x)]ϕ(x|e) dx− C(e)

]
s.t.

∫ 1

0
[x−H(x)]ϕe(x|e) dx = C ′(e) (A.17)∫ 1

0
H(x)ϕ(x|e) dx ≥ γ.

Note that

M((1 + r)I) = Π∗(e) =

∫ 1

0
(x−H∗(x))ϕ(x|e) dx, (A.18)

where H∗ is a solution of (7) with a fixed e. Moreover, M is nonincreasing and concave in γ. Indeed,

monotonicity follows from the ordered structure of the feasible set as γ increases. For concavity, consider

any γ1, γ2 ∈ R and let γλ := λγ1 + (1− λ)γ2 for any λ ∈ (0, 1). Since (A.17) admits a solution, there exists

H1, H2 ∈ I(F , F ) such that∫ 1

0
(x−H1(x))ϕ(x|e) dx = M(γ1);

∫ 1

0
(x−H2(x))ϕ(x|e) dx = M(γ2).

Furthermore, ∫ 1

0
(x−Hi(x))ϕe(x|e) dx = C ′(e)∫ 1

0
Hi(x)ϕ(x|e) dx ≥ γi

for i ∈ {1, 2}. Let Hλ := λH1 + (1− λ)H2, we must have Hλ ∈ I(F , F ) and∫ 1

0
(x−Hλ(x))ϕe(x|e) dx = C ′(e)∫ 1

0
Hλ(x)ϕ(x|e) dx ≥ γλ.

Thus,

M(γλ) ≥
∫ 1

0
(x−Hλ(x))ϕ(x|e) dx

=λ

∫ 1

0
(x−H1(x))ϕ(x|e) dx+ (1− λ)

∫ 1

0
(x−H2(x))ϕ(x|e) dx

=λM(γ1) + (1− λ)M(γ2).

53



Since M is nonincreasing and concave, and since (1 + r)I is an interior of the set{∫ 1

0
H(x)ϕ(x|e) dx

∣∣∣∣H ∈ I(F , F ),

∫ 1

0
(x−H(x))ϕe(x|e) dx = C ′(e)

}
,

there exists λ∗
2 ≥ 0 such that

M(γ) ≤ M((1 + r)I)− λ∗
2(γ − (1 + r)I)

for all γ ∈ R. Meanwhile, for any H ∈ I(F , F ) such that∫ 1

0
(x−H(x))ϕe(x|e) dx = C ′(e), (A.19)

it must be that

M

(∫ 1

0
H(x)ϕ(x|e) dx

)
≥
∫ 1

0
(x−H(x))ϕ(x|e) dx,

by the definition of M . Together with (A.18), we have

M((1 + r)) =

∫ 1

0
(x−H∗(x))ϕe(x|e) dx

≥
∫ 1

0
(x−H(x))ϕ(x|e) dx+ λ∗

2

(∫ 1

0
H(x)ϕ(x|e) dx− (1 + r)I

)
, (A.20)

for all H ∈ I(F , F ) such that (A.19) holds. Since H∗ is feasible for (7) with the fixed e, (A.20) implies∫ 1

0
(x−H∗(x))ϕ(x|e) dx+ λ∗

2

(∫ 1

0
H∗(x)ϕ(x|e) dx− (1 + r)I

)
≥
∫ 1

0
(x−H(x))ϕ(x|e) dx+ λ∗

2

(∫ 1

0
H(x)ϕ(x|e) dx− (1 + r)I

)
, (A.21)

for all H ∈ I(F , F ) satisfying (A.19). Now let

L(H;λ) :=

∫ 1

0
(x−H(x))ϕ(x|e) dx+ λ

(∫ 1

0
H(x) dx− (1 + r)I

)
,

and let L(λ) be the value of

sup
H∈I(F ,F )

L(H;λ) (A.22)

s.t.

∫ 1

0
(x−H(x))ϕe(x|e) dx = C ′(e)

Then (A.21) implies that H∗ solves (A.22) with λ = λ∗
2 and

L(λ∗
2) =

∫ 1

0
(x−H∗(x))ϕ(x|e) dx.
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Meanwhile, by the definition of L(λ),

L(λ) ≥
∫ 1

0
(x−H(x))ϕ(x|e) dx

for all feasible H of (7) with fixed e. Finally, since the constraint in (A.22) is an equality, standard results

(see, e.g., Theorem 3.12 of Anderson and Nash 1987) implies that there exits λ1 ̸= 0 such that (A.16) holds.

For any fixed e ≥ 0, since the primal problem (7) is convex for any fixed e ≥ 0, there exists an extreme

point H∗ of the feasible set that attains Π∗(e). By Theorem A.1, there exists a countable collection of

intervals {[xn, xn)}∞n=1 such that H∗ satisfies conditions 1 through 3 for J = 2. Meanwhile, as established

above, H∗ must also solves the dual problem (A.16) of (7) for this fixed e. Note that the dual problem can

be written as

sup
H∈I(F ,F )

[∫ 1

0
H(x)[(1 + λ∗

2)ϕ(x|e)− λ∗
1ϕe(x|e)] dx+ κ

]
,

with κ ∈ R being a constant that does not depend on H. Moreover,

(1 + λ∗
2)ϕ(x|e)− λ∗

1ϕe(x|e) ≥ 0 ⇐⇒ ϕe(x|e)
ϕ(x|e)

≤ 1 + λ∗
2

λ∗
1

.

Since ϕe(·|e)/ϕ(·|e) is at most N -peaked, there must be a finite interval partition {Ik}Kk=1 of [0, 1] with

K ≤ 2N such that ϕe(x|e)/ϕ(x|e)− (1 + λ∗
2)/λ

∗
1 takes the same sign for all x ∈ Ik.

Therefore, if there are more than N +1 intervals on which H∗ is constant, then either there are at least

two of them contained in a single interval Ik with ϕe(x|e)/ϕ(x|e) < (1 + λ∗
2)/λ

∗
1 for all x ∈ Ik, or there is at

least one of them contained in an interval Ij with ϕe(x|e)/ϕ(x|e) > (1+λ∗
2)/λ

∗
1 for all x ∈ Ij . If there are two

intervals [xn, xn), [xm, xm), with xn ≤ xm, that are contained in some Ik with ϕe(x|e)/ϕ(x|e) < (1+ λ∗
2)/λ

∗
1

for all x ∈ Ik, then, since by condition 2 of Theorem A.1, H∗(xn) < H∗(xm), for H∗∗ defined as

H∗∗(x) :=

{
H∗(x), if x /∈ [xn, xm)

H∗(xn), if x ∈ [xn, xm)
,

for all x ∈ [0, 1], H∗∗ ∈ I(F , F ) and yields a higher value to the objective of (A.16) than H∗. Likewise, if

there is at least one interval on which H∗ is constant that is contained in some Ij such that ϕe(x|e)/ϕ(x|e) <
(1 + λ∗

2)/λ
∗
1 for all x ∈ Ij , then, since H∗(x) < x for all x ∈ (xn, xn), for H

∗∗ defined as

H∗∗(x) :=

{
H∗(x), if x /∈ Ij

max{x,H∗(xn)}, if x ∈ Ij
,

for all x ∈ [0, 1], H∗∗ ∈ I(F , F ) and yields a higher value to the objective of (A.16) than H∗. Thus, H∗

cannot be a solution of the dual problem (A.16) for this fixed e, a contradiction. Consequently, the solution

H∗ to the primal problem (7) for any fixed e ≥ 0 cannot admit more than N + 1 intervals where H∗ is

constant. As a result, H∗ is a contingent debt contract with at most N + 2 contingencies. Since e ≥ 0 is

arbitrary, this completes the proof. ■
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